Модели радиолиний вне зданий
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Радиолинии в мобильной связи часто проходят по неровным местностям. В этом случае следует учитывать реальный профиль трассы. Трасса может изменяться от гладкой до сильно пересеченной местности. Также следует учесть наличие зданий, деревьев и других препятствий при связи в условиях города. Негладкие трассы рассчитываются разными методами. Существующие методы расчета поля в реальных условиях связи сильно отличаются по подходу, сложности и точности. Большинство основано на использовании экспериментальных данных для обслуживаемого района. Ниже описаны некоторые методы.

 

Метод Okumura

Этот метод является одним из широко используемых методов для расчета радиолиний в условиях города. Он пригоден для частот 150 - 2000 МГц (хотя может быть экстраполирован до 3000 МГц) и расстояний от 1 до 100 км. Данный метод может быть использован, если эффективная высота подвеса базовой антенны составляет от 30 до 1000 м.

Okumura предложил сетку кривых для расчета среднего ослабления относительно ослабления в свободном пространстве Amu в условиях города с квазигладким профилем с изотропной передающей антенной, поднятой на эффективную высоту hte = 200 м и мобильной антенной высотой hre = 3 м. Графики получены в результате многих измерений с ненаправленными антеннами базовой станции и мобильного приемника и представлены в виде графика для диапазона частот 100-1920 МГц как функция дальности от 1 до 100 км.

Для определения потерь на радиолинии рассчитывается ослабление поля в свободном пространстве, затем по кривым графика (рис.13) определяется величина Ama (f,d) и добавляются к ослаблению в свободном пространстве с корректирующей поправкой, зависящей от степени неровности профиля трассы:

 

, дБ, (2.7)

 

гдеL50 - средняя величина потерь,

LF - потери в свободном пространстве,

Ama - усредненное дополнительное ослабление, обусловленное влиянием земной поверхности,

G (hte) - эффективное усиление передающей антенны,

G (hre) - эффективное усиление приемной антенны,

GAREA - поправочный коэффициент из графика на рис.14.

 

Рис.13. Частотная зависимость усредненного ослабления сигнала по отношению к свободному пространству для квазигладкого профиля трассы


Рис.14. Поправочный коэффициент, обусловленный профилем радиотрассы.

 

Кроме того, Okumura нашел, что величина G (hte) изменяется по закону 20 дБ/декада, а G (hre) для высот менее 3 м - 10 дБ/декада:

 

,1000 м > h te> 10 м; (2.8а)

,hre < 3 м; (2.8б)

,10 м > hre >3 м. (2.8в)

 

Модель Okumura полностью построена на экспериментальных данных. Графики, полученные Okumura, можно экстраполировать. Модель Okumura наиболее простая и достаточно точная для расчета потерь в сотовых системах связи и мобильной связи. Она является стандартом при расчете сот для мобильной связи в Японии.

Главный недостаток модели - работа с графиками и невозможность полноценно учесть быстроизменяющиеся условия в профиле трассы.

В основном рассмотренный метод используется для расчета радиолиний в урбанизированных и сверхурбанизированных районах. Разница расчетных и экспериментально измеренных напряженностей поля обычно не превышает 10-13 дБ.

 


Модель Hata

Hata обработал экспериментальные данные Okumura для частот 150-1500 МГц и предложил рассчитывать потери распространения в условиях города по стандартной формуле с учетом корректирующих уравнений для иных условий.

Стандартная формула для расчета средних потерь мощности в условиях города:

 

 (2.9)

 

Где fc - частота от 150 до 1500 МГц,

hte - эффективная высота базовой антенны (от 30 до 200 м),

hre - эффективная высота мобильной антенны (от 1 до 10 м),

d - расстояние от передатчика до приемника, км,

a (hre) - корректирующий фактор для эффективной высоты мобильной антенны, который является функцией величины зоны обслуживания.

Для небольших и среднего размера населенных пунктов:

 

. (2.10)

 

Для крупных городов:

 

для fc<300 МГц; (2.11a)

для fc>300 МГц. (2.11б)

 

В сверхурбанизированных районах стандартная (основная) формула Hata (2.9) модифицируется следующим образом:

 

, дБ, (2.12)

 

а для открытых районов:

 

, дБ. (2.13)

 

Хотя формулы Hata не позволяют учесть все специфические поправки, которые доступны в методе Okumura, они имеют существенное практическое значение. Расчеты по формулам Hata хорошо совпадают с данными модели Okumura для дальностей, больших 1 км.

 

Уточнение метода Hata

Европейская ассоциация EVRO-COST предложила новую версию метода Hata, верную для частот до 2 ГГц. Стандартная формула для расчета средних потерь мощности в условиях города записывается следующим образом:

 

, (2.14)

 

Где a (hre) определяется формулами (2.10) и (2.11),

Gm = 0 дБ для городов средних и крупных размеров,

Gm = 3 дБ для столиц.

Допустимые границы параметров в (2.14): fc1500... 2000 МГц,

hte30... 200 м,

hre1...10 м,

d1. .20 км.

Использование вышезаписанных выражений позволяет рассчитывать широкий класс радиоканалов связи с учетом конкретных условий распространения волн. Выбор конкретной модели, описывающей распространение радиоволн, существенно зависит от частоты несущей, высоты подвеса передающей и приемной антенн, окружающего пространства. Адекватность расчетов и экспериментальных данных определяется корректностью используемых методов, а также сильно зависит от практического опыта специалиста.



Дата: 2019-07-30, просмотров: 281.