Потери передачи в удаленных линиях
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Как теоретические, так и экспериментальные исследования подтвердили, что принимаемая мощность изменяется по логарифмическому закону.

Этот закон выполняется как для радиолиний вне зданий, так и внутри их.

Средние крупномасштабные потери при произвольном расстоянии излучатель - приемник описываются выражением

 

 (2.1)

 

или в логарифмическом масштабе


, дБ, (2.2)

 

где n - показатель степени, который показывает, с какой скоростью возрастают потери передачи от расстояния; d0 - расстояние от излучателя до границы отсчета, d - расстояние между излучателем и приемником. Черта в (2.1), (2.2) означает среднее из возможных значений потерь для данного расстояния d. На диаграмме в логарифмическом масштабе график ослабления описывается наклонной прямой с коэффициентом наклона 10. n дБ на декаду. Показатель n зависит от конкретных параметров среды распространения.

 

Таблица. Показатель n ослабления поля для различных условий распространения радиоволн

Среда Показатель n
Свободное пространство 2
Сотовая связь в городе 2.7 - 3.5
Сотовая связь в городе в тени 3 - 5
В зданиях при прямой видимости 1.6 - 1.8
Препятствия, загромождения в зданиях 4 - 6

 

Важно правильно выбрать подходящее расстояние d0 для исследования условий распространения. В сотовой связи с большими зонами действия обычно используется расстояние 1 км, в микросотовых системах много меньше - 100 м. Это расстояние должно соответствовать дальней зоне антенны для исключения эффектов ближнего поля. Эталонное значение ослабления рассчитывается с помощью формулы распространения в свободном пространстве или через поля, измеренные на расстоянии d0.

Уравнение (2.2) не учитывает того, что параметры среды могут быстро изменяться между измерениями.

Измерения показали, что величина ослабления мощности в радиоканале описывается нормально-логарифмическим (равномерным в дБ) законом:

 

, дБ, (2.3a)

и

, дБ, (2.3б)

 

где xs - случайная величина c нормально-логарифмическим законом распределения со стандартной девиацией s, дБ.

Данные формулы могут быть использованы для расчета поля в реальных системах связи при наличии случайных ослабляющих сигнал факторов. На практике величины n и s обычно определяются из экспериментальных исследований (рис.12).

Поскольку значение PL (d) - случайная величина с нормальным распределением по шкале дБ от расстояния d, также случайно распределена и функция Pr (d). Для определения вероятности того, что принятый сигнал будет выше (или ниже) особого уровня, может быть использована функция Q:

 

, (2.4а)

 

где выполняется условие

 

. (2.4б)

 

Вероятность того, что принятый сигнал будет выше некоторой заданной величины g, может быть вычислена из накопительной функции плотности как

 

. (2.5)

 

Аналогично вероятность того, что принятая мощность будет меньше g:

 

 (2.6)

 

Рис.12. Экспериментальные данные, иллюстрирующие ослабление радиоволн в условиях города (приведены данные измерений ослабления мощности радиоканалов для 6 городов Германии, из этих экспериментальных данных определены параметры n=2.7, s=11.8 дБ)




Дата: 2019-07-30, просмотров: 230.