Цель: Сформировать умение строить отрезки по данным формулам.
Оборудование: Циркуль, линейка.
План-коспект занятия:
1. Организационный момент.
2. Объяснение нового материала
Преподаватель: При решении задач алгебраическим методом приходится решать следующую задачу:
Даны отрезки a, b,…, l, где a, b,…, l – их длины. Выбрана единица измерения. Требуется построить отрезок х, длина которого х в этой же системе измерения выражается через длины a, b,…, l заданной формулой:
x = f (a, b,…, l)
Рассмотрим построение отрезков, заданных следующими простейшими формулами:
1) ;
2)
3) , где p и q – натуральные числа;
4) (построение отрезка – четвёртого пропорционального к данным трём).
5) ;
6) ;
7)
С помощью построений 1–7 можно строить отрезки, заданные более сложными формулами.
Рассмотрим пример: (решить вместе с преподавателем).
Пример 1. Пусть а, b, c и d – данные отрезки. Построить отрезок х, заданный формулой:
Решение: Построение отрезка выполняем в следующей последовательности:
1. Строим отрезок у, заданный формулой (для этого дважды выполняем построение отрезка, заданного формулой 5);
2. Строим отрезок z, заданный формулой
(построение отрезка, заданного формулой 6);
3. Строим отрезки u и v по формулам и
(построение отрезка по формуле 4);
4. Строим отрезок х, по формуле
(построение отрезков, заданных формулой 4).
Построение:
Алгебраический метод решения задач состоит в следующем: Задачу формулируют так, чтобы в качестве данных фигур и искомой фигуры были отрезки. Используя подходящие теоремы, выражают длину искомого отрезка через длины данных отрезков и по найденной формуле строят искомый отрезок.
Рассмотрим пример:
Задача 1
Дан треугольник АВС. Построить три окружности с центром, соответственно в точках А, В и С так, чтобы они касались друг друга внешним образом.
Решение:
Анализ. Пусть АВС – данный треугольник, a, b, c – его стороны (AB = c, BC = a, AC = b). Задача будет решена, если мы сможем построить отрезок х по известным отрезкам a, b и c.
Видно, что
Отсюда получаем (1)
Построив отрезок х по этой формуле, проводим окружность (А, х), а затем две другие окружности (В, с – х) и (С, b – x).
Построение:
1) Строим отрезок по формуле
2) Строим окружность (А, х);
3) Строим окружность (В, с – х);
4) Строим окружность (С, b – х).
Доказательство: непосредственно следует из построения.
Исследование: Из формулы (1) находим:
(2)
Из этих формул всегда видно, что задача всегда разрешима, так как в треугольнике АВС c + b – a > 0, a + c – b > 0, a + b – c > 0 и отрезки x, y, z могут быть построены по формулам (2).
Формулы (2) дают единственные значения радиусов искомых окружностей, поэтому задача имеет единственное решение.
5. Домашнее задание: Построить отрезок, длина которого в выбранной системе измерения равна
Занятие 5
Дата: 2019-07-24, просмотров: 279.