Цели: 1. Формирование представлений о сущности решения задачи на построение;
2. Закрепление умений решать основные задачи на построение (14 задач).
Оборудование: Циркуль, линейка.
Методы и средства:
1. Лекция с включённой беседой;
2. Параллельная работа учителя у доски, а учащихся в тетради;
3. Самостоятельная работа учащихся в тетради.
План-конспект занятия:
1. Организационный момент.
2. Проверка домашнего задания: на карточках дать по одному основному построению.
Вопросы:
1. Что значит найти решение задачи на построение?
2. Что значит решить задачу?
3. Какие элементарные построения вы знаете?
4. Какие основные задачи на построение вы знаете?
3. Объяснение нового материала:
Преподаватель: На прошлом занятии мы решали с вами некоторые простейшие задачи на построение, но в конструктивной геометрии существуют гораздо более сложные задачи, решение которых не видно из условий сразу. Для этого решение задачи разбивают на этапы. Может быть, вы помните – какие этапы включает в себя задача на построение?
Ученики: Анализ и построение.
Преподаватель: Правильно, но вы перечислили не все этапы.
1 этап: Анализ. Это поиск способа решения задачи на построение. На этапе анализа мы предполагаем, что искомая фигура построена и отмечаем из этого наброска все зависимости, отношения между элементами этой фигуры.
Пусть, например, надо построить треугольник по основанию и медиане и высоте, проведённых к этому основанию.
Анализ: Допустим, что такой треугольник построен, где BD = m,
BE = h. Заметим, что треугольник АВС легко будет построить, если будет известен треугольник BDE. Отложив по обе стороны от точки Е отрезки, равные половине основания(данного), получим искомый треугольник АВС. Но ведь треугольник BDE состоит из известного (данного нам) катета и гипотенузы. А такой треугольник строить мы умеем и сможем его построить. На этом рассуждения на этапе анализа закончены, можно приступать к построению.
На этапе построения расписывается поэтапно каждое построение. Вернёмся к нашему примеру и выполним построения в следующей последовательности:
1. Строим ∆ BDE по гипотенузе m и катету h.
2. По обе стороны то точки на продолжении прямой откладываем отрезки, равные а/2 (ЕС = а/2; EA = a/2);
3. ∆АВС – искомый.
Дано:
Следующим этапом решения задачи является доказательство того, что построенная нами фигура удовлетворяет всем поставленным нами условиям.
Доказательство: 1. АЕ = ЕС по построению, ВЕ – медиана;
2. ∆ BDE – прямоугольный по построению, а BD – высота к основанию ВС;
4. BE = m, BD = h, AC = a.
После доказатества переходим к исследованию. При построении обычно ограничиваются нахождением какого-либо решения. Но ведь мы знаем, что решить задачу – это что значит?
Ученики: Это значит найти все её решения.
Преподаватель: Обратите внимание на пример нашей задачи. Как вы думаете, сколько решений возможно в данной задаче, если не учитывать различие в расположении на плоскости?
Ученики: Единсвенное решение.
Преподаватель: Итак, при решении задачи на построение принято действовать по схеме:
1. Анализ;
2. Построение;
3. Доказательство;
4. Исследование.
3. Закрепление: решение несложных задач по схеме.
Задача 1
Через точку А, лежащую в середине угла провести прямую так, чтобы точка А была серединой отрезка, отсекаемого от прямой сторонами угла.
1) Анализ. Дан угол А и точка внутри его. Точка будет удовлетворять условиям, если она будет лежать на пересечении диагоналей параллелограмма. Как сделать точку А точкой пересечения диагоналей?
Ученики: на продолжении отрезка КА построить АN = KA и достроить до параллелограмма.
2) Построение.
а) AN = AK;
б) Ð 1 = Ð 2 (NP È KP = P);
в) MP = KM;
г) MP – искомая.
3) Доказательство.
∆ КМА = ∆ APN (Ð 1 = Ð 2, KA = AN, Ð 5 = Ð 6).
4) Исследование:
МР – единственная прямая, так как точка А (как точка пересечения диагоналей) определена единственным образом.
Домашнее задание: Нерешённые задачи на дом;
Повторение этапов решения задачи.
Занятие 3
Дата: 2019-07-24, просмотров: 220.