ДИПЛОМНЫЙ ПРОЕКТ
Расчет холодильника при овощехранилище вместимостью 2000 т
Студент: Е.Г. Караськин
Руководитель проекта: М.Р. Мицукова
Консультант по экономической части: Т.В. Ишбаева
Нормоконтроль: В.В. Прокудин
Мелеуз 2005
ВВЕДЕНИЕ
Искусственное охлаждение используется человеком для своих нужд с древних времен.
Без холодильной техники невозможно прокормить растущее население планеты, поэтому важно развитие и совершенствование, расширение функциональных возможностей. На предприятиях торговли и общего питания для бесперебойного снабжения населения продуктами необходимо хранить запасы пищевых продуктов, в том числе и скоропортящихся, требующего влажного режима хранения лучший способ хранения пищевых продуктов холодом подавляется жизнедеятельность микроорганизмов, замедляется биохимические процессы. Поэтому сохраняется первоначальное качество пищевых продуктов, их естественный вид, вкус, питательная ценность.
В процессе производства и увеличения объемов реализации пищевых продуктов немаловажная роль принадлежит холодильной технике, которая позволяет создавать запасы скоропортящихся пищевых продуктов в широком ассортименте.
- Увеличивать продолжительность хранения замороженных продуктов.
- Продавать пищевая продукты сезонного производства равномерно в течение года.
- Снижать товарные потери при хранении и транспортировке продовольственных товаров.
- Внедрять прогрессивные метода оказания услуг населению предприятиями торговли и общественного питания, обеспечивая высокий уровень обслуживания.
- Удовлетворять потребности населения в доброкачественных продуктах питания.
Первая в мире холодильная машина была сконструирована англичанином Дж. Перкинсом в 1819 году, качестве хладагента конечно был применен этиловый эфир. В 1871 году француз Ш. Гелье создал холодильную машину, работающую на метиловым эфире, и в 1872 году англичанин Бойль, изобрел холодильную машину, в которой в качестве рабочего тела был использован аммиак.
Широкое практическое применение холодильных машин началась в 80-е годы 19 столетия.
Холодильные машины применяют в пищевой, мясомолочной промышленности и в сельском хозяйстве. Для холодильной обработки и хранение пищевых продуктов (овощей и фруктов) в химической, нефтехимической промышленности и во многих других случаях.
В настоящее время преимущественно используют холодильные машины компрессорного типа. При наличии дешевых источников теплоты применяют теплоизолирующие машины.
Холодильные машины работают на хладагентах хлорфторуглеродах (R11. R12. R13. R115. R502 и другие), это создает проблему их замены переходными однокампанентными хладагентами (R22. R123. R124. R140b. R142b) и их смесями с низким потенциалом разрушения озонового слоя, применение которых в соответствии с международным соглашением (монреальский протокол 1987 года) возможно до 2030 года, а так же озонобезопасными однокомпанентными хладагентами (R23. R22. R120. R139a. R148a) и их смесями или природными веществами (R717. R744. R290. R600. R600a).
ВЫБОР РАСЧЁТНЫХ ПАРАМЕТРОВ
Расчетный режим холодильных установок характеризуется температурой кипения t0, конденсации всасывания (паров на входе в компрессор) tвс и переохлаждение жидкого хладагента перед регулирующим вентилем tрв. Значения этих параметров выбирают от назначения холодильной установки и расчетно-наружных условий.
РАСЧЁТ ПЛОЩАДЕЙ, ОБЪЁМНО-ПЛАНИРОВОЧНОЕ РЕШЕНИЕ ХОЛОДИЛЬНИКА
Расчет площадей
База овощей (овощехранилище) – это самостоятельное предприятие, что позволяет более широка и полно использовать холодильные емкости в течении года.
В составе этой базы для овощей, с общей вместимостью 2000 т. имеются такие производственные помещения:
- камеры хранения овощей;
- помещения товарной обработки (переработка, фасовка, упаковка);
-экспедиция для приемки и отпуска продукции.
Так как холодильник имеет вместимость 2000 т., то он имеет 100% вместимость.
Тогда хранение картофеля приходится 25% вместимости овощехранилища, на хранение лука – 25%, моркови - 25% , свеклы – 25%.
Сетку колонн выбирается 6х12 м, т.к. этот выбор целесообразен для данного холодильника.
РАСЧЁТ И ПОДБОР ИЗОЛЯЦИИ
Данные для расчета изоляции приводятся в таблице.
Таблица 4.1
Наименование | № слоя | Материал слоя | Толщина δ, м | Коэффициент теплопроводности, λ, Вт/(м * К) |
1 | 2 | 3 | 4 | 5 |
Наружная стена | 1 | Штукатурка по мет. сетке | 0,02 | 0,93 |
2 | Теплоизоляция ПСБ С | 0,085 | 0,05 | |
3 | Слой битума с рулонным параизоляц. материалом | 0,005 | 0,47 | |
4 | Штукатурка цементно-песчаная | 0,02 | 0,93 | |
5 | Кирпичная кладка | 0,38 | 0,82 | |
6 | Штукатурка цементно-гладкая | 0,02 | 0,93 | |
Стена внутренняя | 1 | Штукатурка по мет. Сетке | 0,02 | 0,93 |
2 | Пенопласт поливинил Хлор. ПХВ-2 | 0,047 | ||
3 | Дидроизол обрилум | 0,003 | 0,03 | |
4 | Штукатурка цементно-песчаная | 0,02 | 0,93 | |
5 | Плиты тепло-изоляциооные из ячеистого бетона | 0,15 | 0,15 | |
6 | Штукатурка цементно-гладкая | 0,02 | 0,93 | |
Перегородка | 1 | Штукатурка по мет. Сетке | 2*0,02 | 0,93 |
2 | Теплоизоляция полиуритан. Жесткая П9-101 | 0,041 | ||
3 | 3. Битум заменой | 0,003 | 0,18 | |
4 | Бетон тяжелый (наруж) | 0,15 | 1,6 | |
Пол с эл/подо-гревом на грунте | 1 | покрытие чистого пола | 0,36 | 0,83 |
2 | Бетонная стяжка | 0,4 | 1,6 | |
3 | Теплоизляция гравий керамзитовый | 0,19 | ||
| 4 | Пароизоляция (гидроизоляция ) | 0,004 | 0,31 |
5 | Железобетонные плиты (перекр. с электра подогревом) | 0,2 | 2,02 | |
6 | Бетонная подготовка | 0,1 | 1,2 | |
7 | Грунт | -- | -- | |
Бесчердачное покрытие | 1 | Кровельный гидроизоляционный ковер (рубероид) | 0,12 | 0,17 |
2 | Бетонная стяжка | 0,4 | 1,6 | |
3 | Теплоизоляционный слой, шлак гранулированный | 0,19 | ||
4 | Железобетонная плита покрытия. | 0,2 | 2,02 |
|
Для уменьшения теплопритоков в охлаждаемые камеры через наружные ограждения, ограждения камер покрывают тепловой изоляцией.
Срок службы холодильника его экономические показатели во многом определяются качеством изоляции.
Для тепловой изоляции применяют материалы органического и не органического происхождения, а так же синтетические.
Для защиты от грызунов поверх изоляции под штукатуркой на высоте 0,7 м от пола прокладывают металлическую сетку с ячейками 10х10 мм с загибом сетки под пол.
Оптимальные значения коэффициентов теплопередачи наружных ограждений даны в таблице 8 , а внутренних в таблице 9, стр99 (1) .
Толщину теплоизоляции определяют по формуле:
δщ = λщ [ 1/k – (1(αн + δ1/ λ1 + δ2/ λ2+ δn/ λn+1/ αв)] ,м (4.1)
где δщ – толщина слоя теплоизоляции , м
λщ – коэффициент теплопроводности теплоизоляционного материала, Вт/(м2* К) (табл. 2.8 (3))
k – коэффициент теплопередачи ограждения Вт/(м2* К) (принимают по табл.8 и 9 (1)).
αн и αвп – коэффициенты теплоотдачи от воздуха к наружной поверхности и от внутренней поверхности ограждения к воздуху камеры, Вт/(м2* К) (по табл.10 (1))
δ1, δ2… δn – толщина слоев строительных материалов, входящих в состав ограждения, м.
λ1 , λ2 …λn – коэффициенты теплопроводности строительных материалов входящих в состав ограждения, Вт /( м3 К) (принимают по таблице 2.8 (3)).
Таблица теплоизоляционного слоя идет в соответствии с ГОСТом: 25мм, 30 мм, 50 мм, 100 мм . Засыпная теплоизоляция идет без ГОСТа в безразмерной величине.
Данные для расчёта толщины изоляционного слоя приводятся в таблице 4.1.
Определяется толщина теплоизоляционного слоя северной и западной наружной стены. Камеры 1 и 2 , так как в этих камерах температура и влажность воздуха одинаковая, то и продукт хранения(картофель) естественно тоже будет один и тот же.
δиз = 0,05 [ 1/0,45 – (1/23,3н + 3*0,02/ 0,93 + 0,005/ 0,47+ 0,38/ 0,82+1/ 9)] = 85 мм
Принимается три теплоизоляционных слоя П-БС толщиной: 2х30 мм и 25 мм.
Так как у камер хранения свеклы (№5, №6) внутренняя перегородка общая то слой теплоизоляции будет располагаться на стороне камер хранения свеклы, так как здесь температура немного ниже, чем в камерах №1 и №2.
Рассчитывается толщина теплоизоляционного слоя восточной перегородки камеры №2. перегородка разделяет эту камеру хранения от коридора.
δиз = 0,041 [1/0.48 – (2*0.02/0.93 + 0.003/0.18+0.15/1.6+1/9)] =75мм
Принимаем 2 теплоизоляционных слоя ПУ-101 толщиной : 50мм и 25 мм.
Определяется толщина изоляционного слоя западной наружной стены камеры №5.
δиз = 0,05 [ 1/0.37 – (1/23.3 + 3*0.02/0.93 + 0.005/0.47 + 0.38/0.82 + 1/9)] = 100 мм.
Принимаем 1 слой теплоизоляцииПС-6С толщиной 100мм.
Определяем толщину слоя теплоизоляции южной внутренней стены камеры №% и №6, так как у этих камер температура и влажность воздуха одинаковые, то продукт хранения (свекла) будет одним и тем же.
δиз =0,047 [ 1/0.39 (3*0.02/0.93 + 0.003/0.03 +0.15/ /0.15+1/9) = 60мм
Принимается 2 слоя теплоизоляции ПХВ-2 толщиной 2*30мм.
Находится толщина теплоизоляционного слоя восточной перегородки камеры №6.
Перегородка разделяет эту камеру хранения от коридора.
δиз = 0,041*[1/0.45-(2*0.02/0.93 + 0.003/0.18 + +0.15/1.6 + 1/9)]= 80мм.
Принимаем 2 слоя теплоизоляции ПУ-101 толщиной 50мм и 30мм.
Определяется толщина теплоизоляционного слоя северной перегородки камеры №5 и №6 , так как в камерах №1 и №2 температура и влажность воздуха одинаковые, значит внутренняя перегородка будет общая.
δиз = 0,041[1/0.58-(2*0.02/0.93+0.003/0.18+0.15/1.6+1/9)]=60мм
Принимаем 2 теплоизоляционного слоя ПУ-101 толщиной 2х30мм.
Определяем толщину теплоизоляционной засыпки пола с эл/подогревом на грунте у камер №1 и №2.
δиз = 0,19[1/0,41-(0,36/0,83+0,4/1,6+,0004/0,31 + 0,2/2,02+ 0,1/1,2+1/9)]= 276мм
Принимается толщину теплоизоляционной засыпки гравия керамзитовая 280мм, так как целое число упрощает засыпки теплоизоляции камер№1 и №2.
δиз = 0,19[1/0.4-(1/23.3+ 0.12/0.17+ 0.4/1.6+ 0.2/2.02+ 1/9)]=250мм
Применяется толщина теплоизоляционной засыпки, шлака гранулированного 250мм.
Определяется Толщина теплоизоляционной засыпки пола с Эл подогревом.
δиз = 0,19[1/0.91-(0.36/0.83+0.4/1.6 +0.004/0.31 + 0.2/2.02+ 0.1/1.2 +1/9)]= 276мм
Принимается толщина теплоизоляционной засыпки гравия керамзитного 280мм так как целое число упрощает засыпку теплоизоляции.
Определяется толщина теплоизоляционной засыпки бес чердачного покрытия у камер №5 и №6.
δиз = 0,19 [1/0.35-(1/23.3+ 0.12/0.17+0.4/1.6+ 0.2/2.02 +1/9)]= 314мм
Принимается толщина теплоизоляционной засыпки шлака гранулированного 320мм, так как целое число упрощает засыпку теплоизоляции.
Для камер №3,№4 и №7,№8 , расчеты аналогичны камерам №1,№2 и №5,№6.
Внутренние ограждения перегородки между камерами №1,№2 и №3,№4 и №5,№6 и №7,№8 состоит из блоков теплоизоляционных материалов, покрытые с обеих сторон цементно-гладкой штукатуркой.
Так как наружная температура воздуха зимой достигает до t= -24 С, а в камерах хранения поддерживается температура примерно от -1 … +3 С, то производится расчет на недопущение конденсации влаги в холодильные камеры, по формуле:
k < 0,95 * αн (tн-tр) / (tн-tв) , Вт/ (м2*К) (4.1)
где αн – коэффициент теплоотдачи с наружной стороны воздуха (αн=23,3);
k = 0.23 ;
tв – температура воздуха с наружи (tв= -24 С);
tр – температура точки росы (tр= -1 С).
k < 0,95 * 23,3 (0-(-1)) / (0-(-24)) = 0,92 Вт/ (м2*К)
0,23< 0,92 – значит конденсации в камерах хранения не будет.
ВЫБОР СИСТЕМЫ ОХЛАЖДЕНИЯ
После определения тепловой нагрузки на компрессор и на камерное оборудование выбираем систему охлаждения камер хранения, наиболее рациональную для данного объекта.
В данном случае проектируется хладоновая (R22), без насосная система. Децентрализованного холодоснабжения с непосредственным охлаждением , при котором хладагент кипит, в приборах охлаждения (ВО), расположенных в камерах. Система охлаждения камер воздушная, с помощью воздухоохладителей, обеспечивается умеренная циркуляция воздуха. Система отвода теплоты конденсации обеспечивается водой из системы оборотного водоснабжения.
На выбор системы охлаждение основное влияние оказывают следующие факторы: число и вид охлаждаемых объектов потребителей холода; расчетная температура в объектах; тепловая нагрузка от охлаждаемого объекта; расчетная суммарная холодонагрузка; требование техники безопасности; наличие серийно выпускного оборудования и приборов автоматики с требовательными характеристиками.
Холодильная установка должна обеспечивать:
- автоматическое регулирование заполнения приборов охлаждения хладагентом или питание хладоносителем;
- защиту компрессоров от влажного хода;
- соответствие холодопроизводительности компрессоров переменным нагрузкам испарительных систем;
- надежное улавливание масла, уносимого из компрессоров и по возможности исключение замасливания теплообменных аппаратов и улавливающих сосудов;
- простоту, надежность и безопасность работы системы.
Децентрализованное холодоснабжение целесообразно применять, где есть возможность установить для каждого охлаждающего объекта автономную, полностью автоматизированную холодильную машину с полной заводской готовностью.
На холодильниках для хранения овощей применяют специальные холодильные машины, укомплектованные. Применения децентрализованного холодоснабжения проявляет сократить сроки монтажа холодильной установки, снизить расходы на их оборудование, исключение: необходимость в устройстве отдельного машинного отделения.
В настоящее время имеется целый ряд специальных холодильных машин, предполагающих применения децентрализованного охлаждения.
РАСЧЁТ И ПОДБОР КОМПРЕССОРА
Исходными данными для теплового расчета холодильной машины является:
Нагрузка на компрессор определяется при расчете теплоприемников с учетом потерь в системе, температурный режим работы, вид хладагента.
Так как для камер хранения №1, №2 и камер №7, №8 температура кипения хладагента в приборах охлаждения будет одинаковая (t0 = -7 С), из-за температуры воздуха в камерах. tв=+2..+5 С , то нагрузка на компрессор для этих камер хранения преобразуется в средние значение (с запасом).
Если для камер №1 и №2 Q0км=71 кВт, а для камер №7 и №8 Q0 км= 74,2 кВт, то среднее (с запасом кВт) Q0км= 75 кВт.
7.1 Выбирается рабочий режим одноступенчатой холодильной установки для камеры хранения №1, №2 и №7, №8.
а) Температура кипения хладагента (R22) t0, известна из раздела «Тепловой расчет холодильника» и равна:
t0=tв-(7-10), 0С (7.1)
t0=3-10=-70C
б) Температура конденсации на 3-50С выше температуры воды, отходящей с конденсатора:
tк= tвд2 +(3-5), 0С (7.2)
где – температура воды выходящей из конденсатора равна +290С , т.к. это значение было найдено в разделе «Выбор расчетных параметров».
tк=29+3=320С
в) Температуру всасывания хладагента (R22) выбирается по формуле:
tвс= 15-250С (7.3)
tвс=180С
г) Холодопроизводительность (нагрузка на компрессор)
Q0км = 75 кВт
Режим работы: t0= -100С, tвс=+100С, tк=250С.
Строится цикл одноступенчатой холодильной машины в диаграмме i-lg P и находим параметры нужных точек.
lg , 3 2I 2
кПа +32
+18
4 -7 1 1I
i ,
кДж/кг
Рис. 3 Цикл одноступенчатой холодильной машины
Значения параметров всех точек сводятся в таблицу 7.1.
Таблица 7.1
ρ0, кПа | ρк , кПа | i1, кДж/кг | i11, кДж/кг | i2, кДж/кг | i4, кДж/кг | ύ1 м3/кг |
395 | 1253 | 601,5 | 719 | 755 | 540 | 0,06 |
290 | 1100 | 698 | 716 | 750 | 505 | 0,09 |
Определяется:
1. Удельную массовую холодопроизводительность хладагента, кДж/кг
q0= i1-i4 , (7.1)
q0=601.5-540=61.5 кДж/кг
2. Действительную массу всасывающего пара, кг/с
mg =Q0 / q0 , (7.2)
mg = 75 / 61.5 = 1.22 кг/с
3. Действительную объемную подачу, м/с
Vд = mg *ύ (7.3)
Vд = 1,22 * 0,06 = 0.0732 м2/с
4. Индикаторный коэффициент подачи
λi = ((ρ0 – ▲ρвс ) / ρ0) – (с ((ρк +▲ρн) / ρ0 – (ρ0 - ▲ρв ) / ρ0)) (7.4)
где с=5% - метровое пространство в компрессоре.
λi = (395-5)/395 – 0,05 ((1253+10) / 395 –- (395 – 5) / 395))= 0,877
5. Коэффициент невидимых потерь для непрямоточных компрессоров.
λw1 = T0 / (Тк + 26), (7.5)
где и - температура кипения и конденсации по Кельвину.
λw1 = 266,1 / (305,1 + 26) = 0,8
6. Определяется коэффициент подачи компрессора.
λ = λi*λw1 (7.6)
λ = 0.877 * 0.8 = 0.7
7. Теоретическая объемная подача, м3/с
Vт = Vд / λ (7.7)
Vт = 0.0732 / 0,7 = 0,104 м3/с
8. Удельная объемная холодопроизводительность в рабочих условиях, кДж /м3
qύ = q0 / ύ1 (7.8)
qύ = 61,5 / 0,06 = 1025 кДж /м3
9. Удельная объемная холодопроизводительность в стандартных условиях
qон = 0,98- 505 = 193 кДж /кг
qон = 193 / 0,004 = 2144 кДж /кг
10. Коэффициент подачи компрессора в стандартных условиях
λн = λin * λwн (7.9)
λн = 0.84 * 0.8 = 0.672
11. Номинальная холодопроизводительность, кВт
Qон= Qо (qύн * λн) / (q0 * λ) (7.10)
Qон = 71 (2144*0,672) / (1277,3 * 0,7) = 115,2 кВт
12. Определяется адиабатная мощность, кВт
Na=mg (i2-i11) (7.11)
Na= 1.22 (755-719) = 44 кВт
13. Индикаторный коэффициент полезного действия
ήi= λw1+ bt0 (7.12)
где t0v - температура кипения,
в- эмпирический коэффициент для хладоновых машин и в= 0,0025.
ήi= 0,8 + 0,0025*(-7) = 0,78
14. Индикаторная мощность, кВт.
Ni= Na / ήi (7.13)
Ni= 44 / 0,78 = 56,4 кВт
15. Мощность трения, кВт
Nтр= Vт* ρтр (7.14)
где ρтр - удельное давление трения, кПа (для хладоновых непрямоточных машин = 19 - 34 кПа
Nтр= 0,104 * 30 = 3,12 кВт
16. Эффективная мощность, кВт
Ne= Ni + Nтр (7.15)
Ne=56.4 + 3.12 = 59.52 кВт
17. Мощность на валу двигателя
Nдв= Ne (1,1-1,12) / ήn (7.16)
где ήn - берется от 0,96-0,98
Nдв= (59.52 * 1.1) / 0.96 = 68.2
18. Эффективная удельная холодопроизводительность
Ее= Qо / Ne (7.17)
Ее= 75 / 59,52 = 1,26
19. Определяется тепловой поток в конденсаторе
Qк= mg (i2 – i3) (7.18)
Qк= 1.22 (755-540) = 262,3
Подбирается по таблице 5.4 (3). «Подбор одноступенчатого компрессора: 4-ре компрессора марки: ПБ-80 (поршневой без сальниковый работающий на R22 , на масле ХФ-22-24)
Технические характеристики ПБ-80:
Qо.н км = 84,9 кВт, Nэл=27,5 кВт, Vт=0,058 м3/с
Диаметр трубопроводов: Dу.вс = 80 мм, Dу.наг =70мм
Диаметр цилиндров76 мм, ход поршня 66 мм. Количество цилиндров у ПБ-80 – восемь.
Частота вращения вала 24,2 с-1 (1450 об/мин.).
Так как для камер хранения №3, №4 и камер хранения №5, №6 температуры кипения хладагента в приборах охлаждения (130) будет одинаковая (t0 = -100C), то нагрузку на компрессор для этих камер хранения преобразуется в среднее значение (с запасом кВт).
Если для камер №3 и №4 Q0км = 81кВт, а для камер №5 и №6 Q0км = 77кВт, то среднее для камер №5 и №6 Q0км = 81кВт
Выбирается рабочий режим первой холодильной установки для камер хранения №3, №4 и №5, №6.
а) Температура кипения хладагента (R22) t0 известна из раздела «тепловой расчет холодильника» а равна:
t0= tв – (7...10), 0С (7.19)
t0= 0-10 = -10 0С
a) Температура конденсации:
tк= tв2 + (3...5), 0С (7.20)
tк= 29 + 3 = 320 С
в) Температура всасывания t= -180С
г) Холодопроизводительность (нагрузка на компрессор)
Q0км=81 кВт
Строится цикл одноступенчатой холодильной машины в диаграмме i-lg P и находят параметры нужных точек.
lg , 3 2I 2
кПа +32
+18
4 -10 1 1I
i ,
кДж/кг
Рис. 4 Цикл холодильной машины
Параметры тачек «заносим» в таблицу 7.2
Таблица 7.2
ρ0, кПа | ρк , кПа | i1, кДж/кг | i11, кДж/кг | i2, кДж/кг | i4, кДж/кг | Q1, м3/кг |
355 | 1267 | 621,6 | 719 | 756 | 540 | 0,075 |
Определяется:
q0 = i1- i4 , кДж /кг (7.21)
q0 = 621,6 – 540 = 81,6 кДж /кг
mg= Q0 / q0 , кг (7.22)
mg= 81/ 81,6 = 0,99 кг/с
Vд= mg * ύ1 , м3/с (7.23)
Vд= 0,99 * 0,075 = 0,074 м3/с
λi = ((ρ0 – ▲ρвс ) / ρ0) – (с ((ρк +▲ρн) / ρ0 – (ρ0 - ▲ρв ) / ρ0)) (7.24)
λi = ((355 – 5 ) / 355) – (0.05 ((1267 +10) / 355 – (355 - 5) / 355)) = 0,85
λw1 = T0 / (Tk +26) (7.25)
λw1 = 263,1 / (305,1 + 26) = 0,
λ= λi * λw1 (7.26)
λ= 0,85 * 0,8 = 0,68
Vт = Vд / λ , м3/с (7.27)
Vт = 0,074 / 0,68 = 0,11 м3/с
qύ = q0 * ύ1 , кДж /кг (7.28)
qύ = 81,6 / 0,075 = 1088 кДж/ м2
Na = mg (i2- i11) , кВт (7.29)
Na = 0,99 (756-719) = 36,63 кВт
10. КПД
ήi = λw1 +bt0. (7.30)
ήi = 0.8+0.0025*(-10)=0.775
Ni = Na / ήi , кВт (7.31)
Ni = 36,6 / 0,775 = 47,26 кВт
Nтр = Vт+qтр , кВт (7.32)
Nтр = 0,11*30=3,3 кВт
Nе = Ni + Nтр , кВт (7.33)
Nе =47,26+3,3 =50,56 кВт
Nдв= Nе (1,1 -1,12) / ήnё (7.34)
Nдв=(50,56 *1,1) / 0,96 = 58 кВт
Ее= Q0 /Ne (7.35)
Ee= 81 / 50,56 = 1,6
Qк= mg (i2-i3) (7.36)
Qк=0,99(756-540)=213,84 кВт
Подбирается по таблице 5.4 (3) « Подбор одноступенчатого компрессора» 4 компрессора марки: ПБ – 80 (поршневой бес сальниковый, работающий на R22 и на масле УФ22 – 24).
Рис. 5
Параметры точек, заносятся в таблицу 9.1.
Таблица 9.1
Наименование трубопроводов | ύ, м3 | m, кг |
Всасывающий | ύ 1= 0,06 | 1,22 |
Нагнетательный | ύ 2 = 0,024 | 1,22 |
Жидкостный | ύ 3= 0,001 | 1,22 |
Определяется диаметр всасывающего трубопровода:
αвс= 4*1,22*0,024 = 0,2928 = 78мм
3,14*15 47,1
Определяется диаметр нагнетательного трубопровода:
α наг = 4*1,22*0,001 = 0,11712 = 50мм
3,14*15 47,1
α ж = 4*1,22*0,001 = 0,00488 = 37,6мм
3,14*1,1 3,454
По таблице 48 (1), подбирается медные бесшовные трубы.
Таблица 9.2
Наименование труб | Dу, мм | DхS, мм | f, м2 | ύ* 103, м3 | Масса 1м, кг |
Всасывающий | 80 | 89*3,5 | 0,2790 | 5,28 | 5,28 |
Нагнетающий | 50 | 57*3,5 | 0,1790 | 1,96 | 4,62 |
Жидкостный | 40 | 45*2,5 | 0,1413 | 1,26 | 2,62 |
б) Определяется внутренний диаметр труб для камер №3, №4 и №5, №6 по формуле:
α = 4* m * ύ , м. (9.2)
П*ώ
Строится цикл в диаграмме i-lg Р и определяются параметры точек.
lg , 3 2I 2
кПа +32
4 -7 1 1I
i ,
кДж/кг
Рис. 6
Параметры точек, заносятся в таблицу 9.1.
Таблица 9.1
Наименование трубопроводов | ύ, м3 | m, кг |
Всасывающий | ύ 1= 0,75 | 0,99 |
Нагнетательный | ύ 2 = 0,024 | 0,99 |
Жидкостный | ύ 3= 0,001 | 0,99 |
Определяется диаметр всасывающего трубопровода:
αвс = 4*0,99*0,075 = 0,297 = 79 мм
3,14*15 47,1
Определяется диаметр нагнетательного трубопровода:
αнаг = 4*0,99*0,024 = 0,095 = 45мм
3,14*15 47,1
Определяется диаметр жидкостного трубопровода:
αжид = 4*0,99*0,001 = 0,00396 = 34мм
3,14*1,1 3,454
По таблице 48(1) , подбираются медные бесшовные трубы:
Таблица 9.2
Наименование Труб | Dу, мм | Dн *s, мм | f, м2 | ύ* 103, м3 | Масса 1м, кг |
Всасывающий | 80 | 89*3,5 | 0,2790 | 5,28 | 5,28 |
Нагнетающий | 50 | 57*3,5 | 0,1790 | 1,96 | 4,62 |
Жидкостный | 40 | 45*2,5 | 0,1413 | 1,26 | 2,62 |
Подбор маслоотделителя
Маслоотделитель служит для улавливания масла, уносимого из компрессора вместе с парами хладона (R22).
Подбираем маслоотделители по диаметру нагнетаемого трубопровода компрессора. При температуре кипения хладона t0=-7 , 0С
Маслоотделитель (Dн=50) подбирается марки 50 МА (для 8 компрессоров 8 маслоотделителей).
10 АВТОМАТИЗАЦИЯ ХОЛОДИЛЬНОЙ УСТАНОВКИ
Работа холодильных машин и установок в автоматическом режиме – это одно из условий повышения эффективности и надежности эксплуатации холодильного оборудования и сокращения эксплуатационных расходов.
Автоматическое управление работой холодильных установок осуществляется посредством приборов автоматики, которые:
- регулируют количество поступающего в испаритель хладагента или хладоносителя;
- изменяют холодопроизводительность путем сокращения времени работы компрессора методом периодического его отключения и включения;
- отключают компрессор при создании аварийной ситуации.
Основные требования к автоматизации холодильной установки:
- обеспечение безопасной работы холодильной машины; поддержание соответствия между холодопроизводительностью и тепловой нагрузкой;
- стабилизация температуры промежуточного хладоносителя и охлаждаемой среды.
При выборе способов регулирования и средств контроля и управления необходимо учитывать особенности холодильной установки как объекта автоматизации.
Помещения, где установлены холодильные машины, относятся к взрывоопасным. Поэтому к ним предъявляют повышенные требования безопасности.
Резкие суточные и сезонные изменения тепловых нагрузок приводят к необходимости применения позиционного регулирования холодопроизводительности (включение и выключение компрессора). В небольших пределах холодопроизводительность можно регулировать с помощью дросселирования на всасывающем трубопроводе компрессора. При этом необходимо поддерживать уровень в ресивере подачи в в испаритель жидкого хладагента. Из-за взрывоопасности помещения для аварийной защиты компрессора отключается электродвигатель привода. Двигатель выключается при возникновении любого из следующих условий: понижении давления во всасывающей линии компрессора; повышении температуры или давления во всасывающей линии компрессора; нарушении подачи смазки; при отклонении уровня хладагента в испарителе, конденсаторе, ресивере или маслоотделителе.
При включении компрессора необходимо обеспечить защиту электродвигателя от перегрузки. Соединение нагнетательного трубопровода с всасывающим на время, необходимое для разгона электродвигателя до номинальной скорости вращения, является наиболее простым и надежным способом защиты электродвигателя компрессора.
Система сигнализации должна обеспечивать: подачу аварийного сигнала, т.е. зажигание табло с надписью «Авария» и включение красной лампочки и звонка при аварийной остановке компрессора; зажигание лампочки указывающей, какой из приборов защиты остановил компрессор, и «запоминание» этого сигнала, т.е. лампочка должна гореть при исчезновении опасного режима до момента устранения причины его возникновения.
Приборы и другие средства автоматизации располагаются по месту (на компрессорах, аппаратах и трубопроводах), на отдельных пультах управления и на главном щите управления.
Приборы дают сигналы о режиме работы на пульт и долее на главный щит, а с главного щита поступает команда на пуск и остановку электродвигателей.
ПОДБОР ПРИБОРОВ АВТОМАТИКИ
РDS – реле разности давлений всасывания и создаваемым компрессором. Двухблочное реле контролирует два давления, действующие не один микропереключатель. Прибор включает в себя узлы низкого и высокого давления. Тип реле Д220-11. Рабочая среда-хладон. Диапазон настройки прямого срабатывания ДНД 0,03-0,4 МПа, ДВД 0,7… 1,9 МПа. Диапазон зоны возврата: ДНД нижнее значение не более 0,04 МПа, вернее значение не менее 0,25 МПа. ДВД нерегулируемая, не более 2 МПа.
РDS – реле разности давления всасывания и нагнетания, предназначено для контроля и автоматической защиты компрессора от понижения разности давлений всасывания и нагнетания; Реле двухблочное, контролирует два давления действующие на один микропереключатель.
Тип реле Д-220-11, техническая характеристика которого приведена выше.
PS – реле давления, включает, отключает, сигнализирует. Предназначено для контроля и автоматической защиты конденсатора, когда давление воды выше допустимого предела, предусмотренного испытанием на прочность. Подбираем реле типа РД 1-01. рабочие среды: хладоны, воздух, вода, масло. Диапазон настроек: прямого срабатывания -0,03…+0,4 МПа, зоны возврата 0,04 МПа.
ТС – реле температуры для регулирования температуры объекта. Манометрическое, так как такое реле температуры получили наибольшее распространение. Оно предназначено для поддержания заданной температуры охлаждаемых объектов. Подбираем термореле типа ТР 1-02Х обыкновенное. Диапазон настроек: температуры срабатывания -20…+100С, зоны возврата 2,5…60С; длинной капилляра 0,6 или 3м; массой 0,8 кг.
PS – реле давления всасывания компрессора, предназначено для контроля и автоматической защиты, когда давление всасывания меньше расчетного. Подбираем реле низкого давления
типа РД-1-01 рабочей средой: хладон, воздух, масло, вода. Диапазон настроек: прямого срабатывания - 0,03…+0,4 МПа, зона возврата 0,04-0,25 МПа.
ТS – реле температуры, манометрическое, защищает компрессор от превышения верхнего предела температуры нагнетания. Подбираем реле типа ТР – ОМ 5-0,6. Диапазон настройки: температура срабатывания +55…+85оС, длиной капилляра 1,5; 2,5 или 4 м.
Р – прибор подсказывающий давление – манометр.
ТРВ – терморегулирующий вентиль, регулирует подачу холодильного агента в испаритель (воздухоохладитель), одновременно осуществляя дросселирование, т.е. понижает его давление и температуру. Подбираем ТРВ – 2 м.
СВ – соленоидный вентиль мембранный – автоматический запорный вентиль служащий для пропускания жидкостей (хладагента) по трубопроводам.
УС – электронное устройство, предназначенное для автоматического оттаивания испарителей (воздухоохладителей). Подбираем электронное устройство типа УЭ – 2, позволяющее автоматически оттаивать снеговую шубу с испарителя (ВО) и поддерживать заданную температуру в охлаждаемом объёме. Настройка температуры в охлаждаемом объёме от -35 до +15оС; периодичность сигнала оттаивания ВО – 4ч, 6ч, 8ч, 16ч, 24ч; длительность сигнала оттаивания ВО – 0,75; 1ч; 1,5ч; 2ч; 3ч.
Определение затрат на воду
Годовое потребление воды определяется по формуле:
Gвд= qвд*Q0*Z*n/ 4.187 , м3/ год. (12.5)
где qвд - удельный расход воды;
Q0 - холодопроизводительность компрессора в рабочих условиях при определенной температуре кипения кВт,
Z – количество, одновременно работающих компрессоров при данной температуре кипения;
n – время работы компрессоров в год, кс
Gвд= 0,02*680,8 19440/ 4,187= 505152 м3/ год.
Стоимость воды определяется по формуле:
Gвд = 505152/ 2519446,3 = 0,2 м3/ год.
Стоимость воды определяется по формуле:
Цвд= Gвд*0,4= 202060 руб/ ч
Стоимость воды нп ед. холода определяется:
Цэл.ед.х= 202060/ 2519446,3= 0,08 руб/ ч.
Цеховые расходы
Статьи расхода | Единицы измерения | Сумма | На ед холода |
Заработанная плата цехового персонола | Руб/год | 436897,7 | 0,17 |
Начисления на заработанную плату 4,65% | Руб/год | 20315,7 | 0,01 |
Амортизация оборудования | Руб/год | 381000 | 0,15 |
Текущий ремонт | Руб/год | 190500 | 0,075 |
Охрана труда | Руб/год | 36000 | 0,01 |
Продолжение таблицы 2.2 | |||
Содержание зданий и оборудования | Руб/год | 126000 | 0,05 |
Износ малоценного и быстро изнашивающего инвентаря | Руб/год | 32700 | 0, 01 |
Прочие расходы | Руб/год | 5712 | 0,01 |
Итого цеховые расходы | Руб/год | 1148125,4 | 0,45 |
Амортизационные отчисления составляют от 8 до 11,5% от стоимости оборудования и монтажа. Стоимость монтажных работ принимаются в размере 20%от стоимости оборудования. Кроме того, должны быть учтены расходы на упаковку и транспортирование оборудования в размере 7% от его стоимости.
А=(1,07Цоб+Цмонт)m (12.11)
где А – амортизаторные отчисления, руб;
1,07 – коэффициент, учитывающий расходы на упаковке и транспортирование оборудования;
Цоб –суммарная стоимость оборудования (300000 руб.)
Цмонт – стоимость монтажных работ составляет 20% от стоимости оборудования
m - норма амортизации отчислений (m=от 0,8 до 0,115).
А= (1,07*3000000+0,2*3000000)0,1= 381000 руб.
Амортизация оборудования на единицу холода:
Аед.х.= 381000/2519446,3= 0,15 руб./кВт
Расходы на текущий ремонт (Трем.) оборудования принемают до 50% от амортизационных отчислений. Расходы по охране труда (ОТед.) принимают из расчета 3000 руб. в год на одного работающего. Расходы на содержание зданий, сооружений, оборудования (Сз.о.) принимают до 1,5% от стоимости основных фондов.
Стоимость 1м3 здания с оборудованием (Сз...) дана в приложении 3,3[5].
Расходы на износ малоценного и быстроизнашивающегося инвентаря (И) должны составлять не более 10% от амортизационных отчислений. На прочие расходы (Пр) предусматривается до 0,5% от общей суммы цеховых расходов.
Суммарный расход по каждой статье делится на выработку холода. Полученные расходы на единицу холода складываются и составляют себестоимость производства единицы холода.
Текущий ремонт определяется по формуле:
Трем.= А*0,5 руб/ год (12.12)
Трем=381000*0,5=190500 руб/ год
Текущий ремонт на единицу холода определяется:
Трем.ед.х= Трем/ Q, руб/ кВт (12.13)
Трем.ед.х= 190500/ 2519446,3= 0,075 руб/ кВт
Охрана труда определяется:
От=3000*12= 36000 руб.
Охрана труда на единицу холода:
ОТед.х= ОТ/ Q, руб/кВт (12.14)
ОТед.х= 36000/ 2519446,3 = 0,01 руб/кВт
Расходы на содержание зданий и оборудования принимают 1,5% от стоимости основных фондов,
Сз.о.= 0,015* ОФ, руб (12.15)
где ОФ – стоимость основных фондов, руб
ОФ= Сз+Со., руб (12.16)
где Сз – стоимость здания, руб
Со – стоимость оборудования, руб
Сз = 3500*Fстр (12.16)
где Fстр – строительная площадь камер, м2
Сз=2500*2160=5400000руб
ОФ= 5400000+3000000=8400000
Сз.о= 0,015*8400000=126000 руб/год
Содержание здание и оборудования на единицу холода:
Сз.о= Сз.о/ Q , руб (12.16)
Сз.о= 126000/2519446,3= 0,05руб/ кВт
Износ малоценного и изнашивающегося инвентаря составляет 10% от амортизации оборудования:
И= 0,1*А ,руб (12.16)
И= 0,1* 327000=32700 руб
Износ инвентаря на единицу холода:
Иед.х= И/ Q , руб/ кВт (12.16)
Иед.х = 32700/ 2519446,3= 0,01 руб/ кВт
Цеховые расходы вычисляются по формуле:
Цр= З+Нз+А+Трем+ОТ+Сз,о+И , руб (12.16)
Цр= 436897,7+20315,7+381000+190500+36000+ +126000+32700= 1191013,4 руб/год
Прочие расходы определяются по формуле:
Пр= 0,005 *Цр (12.16)
Пр=0,005*1191013,4 = 5955 руб/ год
Прочие расходы на единицу холода:
Пр.ед.х= Пр/ Q (12.16)
П
р.ед.х=5955/ 2519446,3 = 0,01 руб/ кВт
Общецеховые расходы составляют с прочими расходами:
Цр.общ= Цр+Пр (12.16)
Цр.общ = 1191013,4 +5955=1196968,4 руб
Общецеховые расходы на единицу холода:
Цр.общ.ед.х= 1196968,4 / 2519446,3= 0,47 руб/ кВт
Определется срок окупаемости:
То=Кв/ А (12.16)
То= 3000000/ 381000= 7,8 год.
Проектируемый холодильник будет работать малоэффективно, так как затраты на производство холода составляют 1196968,4 рублей. Срок окупаемости капитальных вложений составят 7,8 лет.
Охрана труда
Охрана труда – система правовых, технических и санитарных норм, обеспечивающих безопасные для жизни и здоровья трудящихся условия выполнения работы. Администрация обязана внедрять современные средства, технику безопасности, предупреждающие производственные средства, технику безопасности, предупреждающие производственный травматизм, и обеспечивать санитарно гигиенические условия, предотвращающие возникновения профессиональных заболеваний рабочих и служащих. В необходимых случаях бесплатно выдаются спецодежда и другие средства индивидуальной защиты, молоко лечебно-профилактическое питание.
Администрация предприятия обязана издавать безопасные условия труда и осуществлять постоянный контроль за соблюдением рабочими всех требований инструкций по охране труда производственной санитарии и личной гигиены.
Производственная санитария – это система организационных мероприятий и технических средств, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов.
Воздействие производственной среды на организм человека обуславливается физическими, химическими и биологическими факторами.
Физические факторы включают в себя относительную влажность и температуру, движение и барометрическое давление воздуха, радиоактивное и тепловое излечение, шум и вибрацию.
К химическим факторам относятся загазованность воздуха ядовитыми газами и токсичной пылью, неприятные запахи, агрессивные кислоты и щелочи.
Создание благоприятных условий метеорологических на рабочих местах во многом зависит от рационального устройства систем вентиляции, кондиционирования воздуха и отопление. По характеру действия подразделяют на приточную, вытяжную и приточно-вытяжную.
Приточная вентиляция применяется при необходимости замены воздуха в помещении чистым наружным воздухом, а также при необходимости исключить попадание загрязненного воздуха из других помещений.
Приемные устройства для забора наружного воздуха (проемы в стенах, воздухозаборные шахты) размещают в наименее загрязненной зоне производственной территории. Чистота подаваемого в помещение воздуха определяется требованием технологического процесса и содержанием в нем вредных веществ, не более 30%, от предельно допустимой концентрации для рабочей зоны.
Очистка наружного воздуха от пыли производится с помощью масляных, волокнистых, губчатых и электрических фильтров, Кратность вентиляции, а=3.
Вытяжная вентиляция предназначена для удаления из помещений загрязненного воздуха, избыточных тепло и влаго выделений. Выброс в атмосферу воздуха, содержащегося вредные вещества в воздухе, поступающим в помещения через проемы проточной вентиляции, не превышали 30% предельно допустимых концентраций вредных веществ в рабочей зоне. При определении мест установки воздухоприемников вытяжной вентиляции учитывают плотность вредных веществ и расположение источников избыточного тепла и влаги.
Для очистки загрязненного воздуха от пыли, дыма, тумана предусматривают гравитационные пылеуловители, инерционные пылеуловители сухого и мокрого типов, электрические фильтры и тканевые пылеуловители:
Кратность вентиляции, а=3.
Для помещений, в которых возможно внезапное выделение больших количеств вредных или взрывоопасных веществ предусматривают аварийную вытяжную вентиляцию.
Вытяжной воздуховод размещают на расстоянии 1м от пола. Кратность вентиляции, а=5.
В помещениях, где выделяются пожаро и взрывоопасные пары и газы, а так же пары и газы вредных веществ 1-3классы опасности производительность вытяжной вентиляции должна быть больше производительности приточной.
На холодильном транспорте и в малых холодильных установках преобладающим хладагентом является Хладон22 (R22) это тяжелый бесцветный газ с очень слабым специфическим запахом, который ощущается при содержании хладона в воздухе не более 20% от объема. Предельно допустимая концентрация паров R22 в воздухе производственных посещений равна 3000 мг\м3 . уровень шума не должен превышать 80 дбл.
Противохладоновая аптечка состоит из: нашатырного спирта, баллона с кислородной, спирта медицинского, стерильно перевязочных материалов и кровоостанавливающих средств, мази Вишневского, двууглекислой соды, деревянных лопаток для наложения мази, Валериановых каплей.
В посещениях рядом с установкой в застекленном шкафу должно находиться не менее 2-х пар перчаток и один изолирующий противогаз марки ИП-46 , защитные очки, аптечка.
Определение имеет утечки хладона.
Для определения применяют следующие основные способы: обмыливание, с помощью галоидных ламп, галоидным течеискателем.
Наиболее часто определение мест утечки хладона осуществляют с помощью пропановых галоидных ламп. Метод проверки основан на изменении цвета пламени сгораемого топлива. При отсутствии в воздухе паров хладона пламя отрегулированной лампы имеет светло-голубой цвет.
Нельзя курить рядом с установками.
Охрана окружающей среды
Охрана окружающей среды правовая система государственных мер, обеспечивающая рациональное использование, сокращение и воспроизводство природных ресурсов.
Охрана окружающей среды тесно связана с природопользованием.
Природопользование – общественно-производственная деятельность, направленная на удовлетворение материальных и культурных потребностей общества путем использования различных видов природных условий.
Интенсивное развитие народного хозяйства обострило проблему ораны
окружающей среды от промышленных загрязнений является частью социальной и государственной задачи охраны природы, включающей комплекс взаимосвязанных мероприятий.
Охрана природной среды для предприятий промышленности актуальна в связи с интенсификацией производства, наращиванием объемов выпуска продукции. Защита окружающей природной среды не предприятиях промышленности состоит из ряда законодательных актов и организационных мероприятий, организация обследования предприятий и выявление источников загрязнения, обучения в области охраны природы, планировочные мероприятия, а эффективная эксплуатация очистительных сооружений, рациональное использование воды.
Компрессоры работающие на хладагентах хлорфторуглеродах (R11, R12, R13, R115, R502 и другие) создают проблему, так как эти хладагенты разрушают озоновый слой земли, все это создает проблему их замены переходными (временными) хладагентами (R22, R123, R124, R141 b, R142 b) с низким потенциалом разрушения озонового слоя применение которых в соответствии с международным соглашением (Монреальский протокол 1987 года) возможно до 2030 года, а также озонобезопасными однокомпонентными хладагентами (R23, R32, R125, R134 a) и их смесями или природными веществами (R717, R744, R290, R600, R600 a).
Решение этой проблемы должно осуществляться с решением таких проблем как снижение затрат на производство, надежность, безопасность.
ПРИЛОЖЕНИЕ
ИДИВИДУАЛЬНОЕ ЗАДАНИЕ
ДИПЛОМНЫЙ ПРОЕКТ
Расчет холодильника при овощехранилище вместимостью 2000 т
Студент: Е.Г. Караськин
Руководитель проекта: М.Р. Мицукова
Консультант по экономической части: Т.В. Ишбаева
Нормоконтроль: В.В. Прокудин
Мелеуз 2005
ВВЕДЕНИЕ
Искусственное охлаждение используется человеком для своих нужд с древних времен.
Без холодильной техники невозможно прокормить растущее население планеты, поэтому важно развитие и совершенствование, расширение функциональных возможностей. На предприятиях торговли и общего питания для бесперебойного снабжения населения продуктами необходимо хранить запасы пищевых продуктов, в том числе и скоропортящихся, требующего влажного режима хранения лучший способ хранения пищевых продуктов холодом подавляется жизнедеятельность микроорганизмов, замедляется биохимические процессы. Поэтому сохраняется первоначальное качество пищевых продуктов, их естественный вид, вкус, питательная ценность.
В процессе производства и увеличения объемов реализации пищевых продуктов немаловажная роль принадлежит холодильной технике, которая позволяет создавать запасы скоропортящихся пищевых продуктов в широком ассортименте.
- Увеличивать продолжительность хранения замороженных продуктов.
- Продавать пищевая продукты сезонного производства равномерно в течение года.
- Снижать товарные потери при хранении и транспортировке продовольственных товаров.
- Внедрять прогрессивные метода оказания услуг населению предприятиями торговли и общественного питания, обеспечивая высокий уровень обслуживания.
- Удовлетворять потребности населения в доброкачественных продуктах питания.
Первая в мире холодильная машина была сконструирована англичанином Дж. Перкинсом в 1819 году, качестве хладагента конечно был применен этиловый эфир. В 1871 году француз Ш. Гелье создал холодильную машину, работающую на метиловым эфире, и в 1872 году англичанин Бойль, изобрел холодильную машину, в которой в качестве рабочего тела был использован аммиак.
Широкое практическое применение холодильных машин началась в 80-е годы 19 столетия.
Холодильные машины применяют в пищевой, мясомолочной промышленности и в сельском хозяйстве. Для холодильной обработки и хранение пищевых продуктов (овощей и фруктов) в химической, нефтехимической промышленности и во многих других случаях.
В настоящее время преимущественно используют холодильные машины компрессорного типа. При наличии дешевых источников теплоты применяют теплоизолирующие машины.
Холодильные машины работают на хладагентах хлорфторуглеродах (R11. R12. R13. R115. R502 и другие), это создает проблему их замены переходными однокампанентными хладагентами (R22. R123. R124. R140b. R142b) и их смесями с низким потенциалом разрушения озонового слоя, применение которых в соответствии с международным соглашением (монреальский протокол 1987 года) возможно до 2030 года, а так же озонобезопасными однокомпанентными хладагентами (R23. R22. R120. R139a. R148a) и их смесями или природными веществами (R717. R744. R290. R600. R600a).
ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ
Территория, на которой родился Санкт Петербург, издревна была дальней окраиной Новгородской Руси, а затем московского государства.
Известно, что в 18 веке эти места называли Ижорской землей. По одному из притоков нивы, небольшой извилистой реки Ижоря, протекающей ныне среди южных питерских пригородов.
Санкт – Петербург центр ленинградской области, город федерального значения, субъекта РФ город – Герой. Важнейший после Москвы экономически научный и культурный центр, крупный транспортный узел России, морской и речной порт. В административном отношении С-П разделен на 13 регионов, расположен на северо – западной европейской части России, большая часть города в пределах при Невской низменности, на реке Нева и прилегающем ее устью побережья Невской губы финского залива, Балтийского моря, а так же на многочисленных островах разветвленной Невской дельты.
Ныне в черте города 45 рек,40 искусственных каналов протяженностью 300 км. Климат С-П. морской с чертами континентального, частая смена воздушных масс много атмосферных фронтов. Зима умерено мягкая морозная средняя температура самых холодных месяцев января и февраля -7 -8 С.
Весна поздняя, лето теплое со сменой солнечных и дождливых дней. Средняя температура июля 17,8 0С. Осень затяжная, туманная.
В 1762г. учреждена комиссия о каменном строении Санкт-Петербурга и Москвы.
ВЫБОР РАСЧЁТНЫХ ПАРАМЕТРОВ
Расчетный режим холодильных установок характеризуется температурой кипения t0, конденсации всасывания (паров на входе в компрессор) tвс и переохлаждение жидкого хладагента перед регулирующим вентилем tрв. Значения этих параметров выбирают от назначения холодильной установки и расчетно-наружных условий.
Дата: 2019-07-24, просмотров: 194.