Элективный курс «Химия и экология» рассматривает, в частности, вопросы мониторинга почв ( Приложение 5). В практикум к элективному курсу «Химия и экология» [37] включено занятие «Мониторинг почвы», на котором учащиеся проводят опыты по определению структуры почвы, определению окраски почвы и водопрочности структурных агрегатов, определению обменной кислотности в почвенной вытяжке, определению карбонат-иона, хлорид-иона, сульфат-иона, ионов натрия, железа (II) и (III) в почвенной вытяжке. Экологический аспект анализа почвы включает также исследование кислотности почв. Мы несколько модернизировали опыт, предлагаемый в «Тетради для лабораторных опытов и практических работ к учебнику О.С. Габриеляна «Химия. 8 класс» [8], адаптировав его к возможностям цифровой лаборатории «Архимед»
Опыт № 1. Анализ почвы [8]
Цель работы: Определить характер среды (кислая, щелочная, нейтральная) различных видов почв и сделать вывод об их пригодности для выращивания различных с/х растений.
Форма работы: фронтальная (демонстрационный эксперимент).
Оборудование и реактивы: лабораторный штатив с муфтой и кольцом, воронка, фильтровальная бумага, пробирка, стеклянная палочка, 2 химических стакана, датчик рН, цифровая лаборатория «Архимед».
Настройка параметров измерения:
1) частота измерений – каждую секунду;
2) число замеров – 500
Приготовление почвенного раствора. В химический стакан поместите почву. Прилейте дистиллированную воду, объём которой должен быть в 3 раза больше объёма почвы. Хорошенько перемешайте стеклянной палочкой.
Приготовьте лабораторный штатив. Наденьте муфту на стержень штатива так, чтобы винт, закрепляющий её, был справа от стержня штатива. Закрепите в муфту кольцо так, чтобы стержень кольца поддерживал не только винт, но и муфта. Поместите в кольцо воронку.
Приготовьте бумажный фильтр. Смочите фильтр водой, чтобы он плотнее прилегал к стенкам воронки и чтобы сухой фильтр не впитывал фильтруемую жидкость. При фильтровании жидкость наливайте на фильтр по палочке тонкой струёй, направляя её на стенку воронки, а не на непрочный центр фильтра, чтобы его не разорвать. Подставьте под воронку химический стакан и профильтруйте подготовленную смесь почвы и воды. Почва останется на фильтре, а собранный в пробирке фильтрат представляет собой почвенную вытяжку (почвенный раствор).
В почвенную вытяжку поместите датчик рН и начинайте регистрацию данных. Эксперимент проделайте не менее 3-х раз.
Результаты измерений: занесите полученные данные в таблицу 6 «Кислотность почв» и сделайте вывод об их пригодности для выращивания различных с/х растений.
Таблица 6 - Кислотность почв
Образец почвы | рН |
Образец почвы № 1 | |
Образец почвы № 2 | |
Образец почвы № 3 |
Опыт 2. Коррозия металлов
Данный эксперимент может быть проведён на элективном курсе «Химия и экология», в рамках подготовки к ученическим конференциям и в урочной деятельности в 9 классе при изучении темы «Металлы» на уроке № 13 «Общие понятия о коррозии металлов» (Приложение 1).
Цель работы: изучить влияние продуктов коррозии на развитие водных растений, используя при этом возможности цифровой лаборатории «Архимед» (насадка рН-метр).
Форма работы: фронтальная (демонстрационный эксперимент).
Опыт 1. Влияние продуктов коррозии металлов на развитие водных растений
Опыт закладывают за 4 дня до урока (можно на предыдущем уроке). Значения рН регистрируют в одно и тоже время один раз в день. Полученные по водородному показателю данные представляют учащимся в виде графика. А сами опытные образцы демонстрируют на уроке.
Реактивы и оборудование: вода, железный гвоздь, кусочек меди (цинка, олова), водоросли; 3 химических стакана.
Ход работы: Три химических стакана вместимостью 100 мл наполняют водой и помещают в них водоросли. Во 2-й стакан опускают гвоздь, в 3-й – гвоздь и кусочек меди (цинка, олова), а 1-й стакан оставляют в качестве контрольного. В течение 4 дней делают контрольные замеры pН воды во всех стаканах, проводят обнаружение ионов металлов (Fe2+, Fe3+, Zn2+, Cu2+, Sn2+).
Наблюдения:
Через 5 дней можно наблюдать резкое изменение pН воды во 2-м и 3-м стаканах по сравнению с контрольным, а также внешнего вида растений: они буреют, сильно ослизняются, отмирает корневая система.
Ход опыта: Четыре химических стакана вместимостью 50 мл наполняют водой и:
В стакан № 1: помещают водоросли – контрольный образец
В стакан №2: помещают водоросли и железный гвоздь
В стакан № 3: помещают водоросли и железный гвоздь, с медной проволокой
В стакан № 4: помещают водоросли и железный гвоздь, с цинковой стружкой
· В течение 4 дней делают контрольные замеры pН воды во всех стаканах
· Значения рН регистрируют в одно и тоже время один раз в день.
· Полученные по водородному показателю данные представляются учащимся в виде графика.
· Сами опытные образцы растений демонстрируют на последнем элективе.
Наблюдения:
Через 5 дней можно наблюдать изменение pН воды во 2-м, 3-м,4-м стаканах по сравнению с контрольным, а также внешнего вида растений: они буреют, сильно ослизняются. ( таблица 7)
Таблица 7 - Водородный показатель при прохождении процессов коррозии металлов в воде
Дата измерения | Стакан №1 | Стакан №2 | Стакан №3 | Стакан №4 |
Первый день | 8,38 | 8,37 | 8,30 | 8,33 |
Второй день | 9,07 | 9,26 | 8,95 | 8,43 |
Третий день | 9,10 | 9,68 | 9,15 | 8,58 |
Четвёртый день | 9,14 | 9,75 | 9,20 | 8,63 |
Пятый день | 9,15 | 9,75 | 9,47 | 8,68 |
Теоретическое обоснование процесса
Коррозия – это самопроизвольное разрушение металлических материалов, происходящее под химическим воздействием окружающей среды [42].
В результате электрохимической коррозии окисление металла может приводить как к образованию нерастворимых продуктов (например ржавчины), так и к переходу металла в раствор в виде иона. Ржавчина представляет собой гидратированный оксид железа – Fe2O3· xH2O. Ржавление протекает под воздействием воды и кислорода. Это электрохимический процесс, при котором одни частицы железа играют роль катода, а другие – анода.
Важнейшими окислителями, вызывающими электрохимическую коррозию являются кислород и ионы водорода.
О2 + 2Н+ + 4e = 2Н2О
2Н+ + 2e = Н2
Образец в стакане № 2:
В анодной области:
Fe(тв) – 2е → Fe2+(водн),
В катодной области:
О2(водн) + 2Н2О(ж.) + 4е → 4ОН-(водн)
При контакте катодной и анодной областей происходит осаждение Fe(OH)2. Воздух окисляет его и образуется ржавчина:
Fe(OH)2(тв.) + 0,5О2 + Н2О → Fe2O3· xH2O
Образец в стакане № 3 (катодное покрытие): металл включения (Cu) имеет больший потенциал, чем основной металл (Fe)
В анодной области:
Fe(тв) – 2е → Fe2+(водн)
В катодной области:
2Н+ + 2e → Н2
О2(водн) + 2Н2О(ж.) + 4е → 4ОН-(водн)
При контакте катодной и анодной областей происходит осаждение Fe(OH)2. Воздух окисляет его и образуется ржавчина:
Fe(OH)2(тв.) + 0,5О2 + Н2О → Fe2O3· xH2O
Поток электронов от железа направляется к меди и разряжает ионы водорода, а железо разрушается быстрее, чем без меди.
Образец в стакане № 4 (анодное покрытие): металл включения (Zn) имеет меньший потенциал, чем основной металл (Fe)
В анодной области:
Zn(тв) – 2е → Zn2+(водн)
В катодной области:
2Н+ + 2e → Н2
2Н2 + О2(водн) → 2 Н2О
О2(водн) + 2Н2О(ж.) + 4е → 4ОН-(водн)
При контакте катодной и анодной областей происходит осаждение Zn(OH)2(осадок белого цвета)
Значения электродных потенциалов металлов подтверждают предложенное выше объяснение процесса:
Fe3+ + 3e = Fe, Е0 = - 0,036 В
Сu2+ + 2e = Cu, Е0 = 0,337 В
Zn2+ + 2e = Zn, Е0 = - 0,763 В
Таким образом, медь будет увеличивать скорость электрохимической коррозии. Это подтверждают результаты эксперимента, а именно в 3-м стакане изменение значения рН более интенсивно по сравнению с 4-м стаканом.
Опыт № 3. Определение рН (водородного показателя) питьевой неминерализованной воды, минеральной воды, газированных окрашенных напитков
Активная реакция среды, является одним из параметров качества питьевой воды, наряду с такими характеристиками как температура, мутность, цветность, запах и привкус, прозрачность, общая жёсткость, содержание ионов, окисляемость.
На величину рН воды влияет содержание карбонатов, гидроокисей, солей, подверженных гидролизу, гуминовых веществ и т. п. Данный показатель является индикатором загрязнения открытых водоемов при выпуске в них кислых или щелочных сточных вод, а также питьевой воды. В результате происходящих в воде химических и биологических процессов и потерь углекислоты рН воды открытых водоемов может быстро изменяться, и этот показатель следует определять сразу же после отбора пробы, желательно на месте отбора. Измерение рН цветных растворов и суспензий индикаторным способом невозможно.
Цель работы: Определить характер среды (кислая, щелочная, нейтральная) различных пробы воды (хозяйственно-питьевая вода, вода из водоёма, вода из родника) и напитков (Кока-кола, Фанта) и сделать вывод об их пригодности для потребления в качестве питьевой воды.
Форма работы: фронтальная (демонстрационный эксперимент).
Оборудование и реактивы: пробы воды и напитков (хозяйственно-питьевая вода, вода из водоёма, вода из родника, Кока-кола, Фанта); химические стаканы, лабораторный штатив, датчик рН, цифровая лаборатория «Архимед».
Настройка параметров измерения:
1) частота измерений – каждую секунду;
2) число замеров – 50
Ход работы: каждую из предложенных для анализа вод прилить в химический стакан. Погрузить датчик рН, начать измерение.
Результаты работы: представить полученные результаты в форме таблицы (Таблица 8)
Таблица 8 - Активная реакция среды рН проб воды и напитков
Пробы воды и напитков | Объём пробы воды и напитков | Активная реакция среды, рН | Среднее значение рН |
Хозяйственно-питьевая вода | |||
Проба 1 | |||
Проба 2 | |||
Проба 3 | |||
Вода из водоёма | |||
Проба 1 | |||
Проба 2 | |||
Проба 3 | |||
Вода из родника | |||
Проба 1 | |||
Проба 2 | |||
Проба 3 | |||
«Кока-кола» | |||
Проба 1 | |||
Проба 2 | |||
Проба 3 | |||
«Фанта» | |||
Проба 1 | |||
Проба 2 | |||
Проба 3 |
Вывод: Сделайте вывод о пригодности исследуемых вод по показателю рН, если согласно требованиям ГОСТ активная реакция (рН) питьевой воды должна составлять 6,5-9,5.
Дата: 2019-07-24, просмотров: 224.