Аналіз змісту і методів вивчення елементів стереометрії у курсі геометрії 9 класу за новими підручниками з геометрії
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

У зв'язку з введенням у школах нових навчальних планів і програм з математики постала гостра потреба у підручниках, які б відповідали вимогам нових програм.

Навчання математики у 9 класах загальноосвітніх навчальних закладів здійснюється за новими підручниками: «Геометрія. 9 клас» (автори А.Г. Мерзляк, В.Б. Полонський, М.С. Якір) видавництва «Гімназія», «Геометрія. 9 клас» (автори Бурда М.І., Тарасенкова Н.А.) видавництва «Зодіак – ЕКО», «Геометрія. 9 клас» (автори А.П. Єршова, В.В. Голобородько, О.Ф. Крижановський, С.В. Єршова) видавництва «Ранок».

Ці підручники створено відповідно до Державного стандарту та нових програм з алгебри та геометрії для 9 класу загальноосвітніх навчальних закладів. Однією з основних проблем шкільних підручників геометрії – оптимальне поєднання науковості й доступності викладення матеріалу. Складністю вирішення цієї проблеми пояснюється те, що українські школи мають обмаль підручників, за якими справді хотілося б навчати учнів. Та з іншого боку, це дало поштовх до педагогічної творчості чималій кількості небайдужих вчителів.

Розглянемо, як висвітлений розділ «Початкові відомості зі стереометрії» у цих підручниках.

У підручнику «Геометрія, 9» М.І. Бурди, Н.А. Тарасенкової розділ розпочинається переліком передбачуваних пізнавальних результатів («У розділі дізнаєтесь…»), а завершується рубрикою «Перевірте, як засвоїли матеріал розділу». Тут подано контрольні запитання узагальнюючого характеру і тестові завдання. У кожному параграфі є: основний навчальний матеріал; додаткові відомості (рубрика «Дізнайтеся більше»); запитання для повторення вивченого (рубрика «Згадайте головне»); система задач, диференційована за складністю (рубрика «Розв'яжіть задачі»), яку завершує окремий блок завдань «Застосуйте на практиці».

Науковість змісту розділу забезпечена в першу чергу логічно послідовним розміщенням навчального матеріалу, коректним формулюванням означень понять, достатнім рівнем строгості. Логічне упорядкування і послідовність навчального матеріалу розділу відповідають вимогам дидактики і математики як науки. Термінологія сучасна, предметна й однозначна. Поняття і властивості геометричних фігур сформульовані коректною математичною мовою. Чітко розмежовується зміст понять (перераховуються всі суттєві ознаки) і їх обсяг (вказується множина об'єктів, де застосовується поняття). При цьому зміст понять розкривається за допомогою означень, а їх обсяг – із залученням класифікацій (поділу понять за певною ознакою). З одного боку, це покращить засвоєння і застосування понятійного апарату даної теми, а з другого – посилить його зорове сприймання. Заслуговує на увагу і те, що поряд з означеннями понять через найближчий рід і видову відмінність, сприймання яких вимагає складнішої розумової діяльності, використовуються і конструктивні означення, які дають змогу учневі усвідомити сам процес створення (побудови) відповідного стереометричного об’єкта. Тому означення поняття нерідко спирається або на малюнок, або побудову відповідної геометричної фігури, або на розгляд життєвої ситуації. Учням пропонується спочатку самостійно дати означення поняттю, а потім порівняти його з наведеним у підручнику.

Вивчення геометричних фактів, як правило, розпочинається з аналізу учнем емпіричного досвіду (відповідних прикладів із довкілля, моделей чи малюнків), або з опису практичних дій. Це дає змогу проводити невеликі дослідження, з'ясовувати суттєві ознаки понять, властивості геометричних фігур і на основі цього самостійно формулювати відповідні твердження. Самостійно оволодіти навчальним матеріалом допоможе і підкріплення його малюнками, які виконують не лише ілюстративну, а й евристичну роль – на малюнках кольором виділено дані і шукані величини, допоміжні побудови тощо. Кольорові фотографії та ілюстрації також несуть ретельно продумане дидактичне навантаження.

Задачі підручника мають чотири рівні складності – початковий, середній, достатній і високий. Усередині набору кожного рівня складності задачі згруповані за порядком вивчення теоретичних відомостей. Як правило, набори початкового і середнього рівнів складності розпочинаються із задач за готовими малюнками. Хоча вони не є винятком і серед більш складних задач. Окремі найбільш важливі задачі-теореми виділені чорним шрифтом. Учням доцільно запам’ятати їх формулювання. Ці геометричні твердження можна застосовувати у розв'язуванні інших задач. Особливістю задач є те, що задачі високого рівня складності включають елементи задач середнього і достатнього рівнів, а останній – елементи задач початкового рівня.

Особливістю розділу є прикладна спрямованість змісту. Автори намагалися, де це можливо, не лише показати виникнення геометричного факту із практичної ситуації, а й проілюструвати застосування його на практиці. З цією метою в окремо виділеному блоці завдань «Застосуйте на практиці» подано типові практичні ситуації, де потрібно застосувати вивчений матеріал.

У підручнику «Геометрія, 9» А.П.Єршової, В.В. Голобородько, О.Ф. Крижановського, С.В.Єршова зазначено, що цей розділ «своєрідний стислий огляд курсу геометрії 10–12 класів». Тема «Початкові відомості зі стереометрії» передбачає ознайомлення учнів з фігурами в просторі і є пропедевтичним вступом до курсу стереометрії, що вивчатиметься у старших класах. Разом із цим, у порівнянні з попередніми підручниками, з'являються нові дидактичні акценти, пов'язані зі специфікою «геометрії методів», розширюються і поглиблюються окремі питання щодо властивостей геометричних фігур, методики розв'язування задач тощо.

Структура, обсяг і співвідносність розділів навчального матеріалу повністю відповідають діючій програмі. Однак порівняно з традиційними підходами до розгляду відповідного навчального матеріалу запропоновано декілька важливих інновацій. Це дає можливість спростити низку доведень. Найбільш складні з точки зору обґрунтування теореми супроводжуються в основному тексті зрозумілими для пересічного учня загальними схемами міркувань, а відповідні строгі доведення подаються в «Додатках».

У тексті виділено основний зміст (означення, теореми й наслідки з них), доповнення та приклади розв'язування задач. До кожної теореми подано її назву. Наприкінці розділу міститься підсумковий огляд його змісту у вигляді таблиці, які наочно ілюструють змістовно-логічні та структурно-функціональні зв'язки між елементами навчального матеріалу.

Крім того, наприкінці розділу пропонуються контрольні запитання і типові задачі для підготовки до контрольної роботи. Наявність цих матеріалів дає змогу учневі самостійно оцінити рівень своєї математичної підготовки; запитання і задачі мають діагностичну цінність і сприяють корекції знань. Додаткові задачі до розділу призначені для організації інтегрованого повторення і узагальнення вивченої теми, встановлення внутрішніх взаємозв'язків між окремими фрагментами теми. Окремо після розділу виділено задачі підвищеної складності. Така організація матеріалу дає змогу забезпечити опанування учнем програмового змісту як під керівництвом учителя, так і самостійно.

Теоретичний матеріал побудовано за схемою «означення основних понять – аксіоми й теореми – наслідки – приклади застосування». Окреме місце відводиться опорним задачам, які містять додаткові теоретичні відомості, на які учні далі можуть посилатися без доведення. Такі задачі подаються як в основному тексті параграфів, так і в задачному матеріалі. Задачі до кожного параграфа розподілено на чотири групи. Першу групу складають усні вправи – завдання теоретичного плану, розгляд яких є проміжним етапом між вивченням теорії і розв'язуванням письмових задач. Наявність таких задач дає змогу використовувати на уроці інтерактивні форми роботи. Друга група завдань – графічні вправи, які учні можуть виконувати як власноруч у зошиті, так і за допомогою комп'ютера. Ці вправи дають наочне уявлення про базові геометричні конфігурації, що вивчаються, сприяють розвитку початкових креслярських умінь і навичок роботи з графічними комп'ютерними програмами. Наступну групу складають письмові задачі, згруповані за трьома рівнями складності. Зазначимо, що на кожному рівні завдання диференційовано за змістом навчальної діяльності – задачі на обчислення, доведення, побудову тощо. Нарешті, наприкінці кожного параграфа виділено теоретичний матеріал, який необхідно повторити для свідомого засвоєння наступної теми, і подано задачі для повторення.

Розв'язувати всі задачі розділу не обов'язково (а з урахуванням наявного навчального часу і неможливо). Задачі до кожної теми свідомо подано в надлишковій кількості, щоб розширити творчі можливості вчителя, сприяти організації особистісно-орієнтованого навчання, диференціації роботи учнів у класі та вдома з урахуванням їхніх індивідуальних можливостей і рівня математичної підготовки.

До теми «Взаємне розташування прямих у просторі» у трьох підручниках докладно подано основні фігури в просторі, позначення і зображення площин, розміщення точок у просторі. У підучниках Мерзляка і Єршова чітко виділені твердження, як однозначно задати площину. Також тут подані графічні зображення взаємного розміщення двох прямих у просторі, у підручнику Бурди лише продемонстровано на прикладі кімнати.

До теми «Взаємне розміщення прямих і площин у просторі» у підручнику Бурди всі випадки взаємного розміщення прямої і площини, двох площин наведені в таблиці, графічних зображень немає.

При вивченні в 9 класі даного розділу значну увагу слід приділити формуванню в учнів культури графічного зображення просторових тіл та їх елементів. До даних тем у трьох підручниках вдало підібрані усні та графічні вправи, у підручниках Мерзляка, Бурди значна увага приділена задачам практичного змісту, більшість задач супроводжуються допоміжними малюнками. Таким чином, вивчаючи перші теми стереометрії учні відзначають, що в просторі взаємне розташування фігур є більш різноманітним, ніж у площині.

Наступні теми передбачають вивчення основних тіл стереометрії, вони закладають формування переходу від мислення в категоріях плоских фігур до мислення в просторі, також усвідомлення того, що для визначення взаємного розташування фігур у просторі слід правильно виокремити ті елементи, які визначають це взаємне розташування.

Так, до теми «Поняття многогранника. Призма.» у даних підручниках сформульоване поняття геометричного тіла, многогранника та його елементів, наведені наочні та графічні зображення призм. Дев’ятикласники вже мають запас просторових уявлень, тому при вивченні даних тем вони доповнюються і систематизуються.

У підручниках Мерзляка і Єршова подається доведення теорем про площу бічної поверхні прямої призми.

У підручнику Бурди вивчення піраміди і призми подано одночасно, властивості розглядаються без доведень, проте вони мають достатньо переконливе наочне підтвердження. Так, вивчення властивостей фігур у просторі спирається на приклади з довкілля, макети, малюнки або досліди. Щоб учні до формул об’ємів призми (піраміди) розглядаються досліди з пересипанням піску.

Циліндр, конус, куля подаються в усіх підручниках як тіла обертання. Бічні поверхні циліндра і конуса розглядаються через розгортки відповідно циліндра і конуса.

На мою думку, те, що у підручнику Бурди призма і піраміда подаються разом є своєрідним недоліком. Також сюди можна віднести той факт, що ми бачимо перенасичення задачами. Слід зазначити, що не всі задачі однаковою мірою сприяють цілеспрямованому розвитку даного процесу. Саме тому доцільно використовувати систему вправ і задач, яку будують так, щоб учень самостійно застосовував свої знання, вміння, уявлення, щоб у нього вироблялася звичка переносити знання у нові ситуації. Розв’язуючи задачі учні повинні усвідомлювати ті дії, які вони при цьому виконують. Аналіз дій дає їм змогу підходити до пошуків алгоритмів розв’язання задач певного виду, а потім і до алгоритмізації більш складних видів навчальної діяльності.

У школі вчителі протягом вивчення стереометрії приділяють увагу в основному опрацюванню теорії та розв’язуванню абстрактних задач, оскільки вони недооцінюють можливості реалізації прикладної спрямованості для досягнення цілей вивчення цього курсу. Посилюють цю ситуацію такі фактори: невелика кількість годин, що відведена для вивчення курсу стереометрії; у методичній літературі мало матеріалів, які доводять значущість прикладної спрямованості та конкретних методичних розробок, що допомагають вчителю ефективно використовувати її засоби тощо. З огляду на перераховані обставини, у вчителів відсутня мотивація для систематичного прикладного спрямування курсу, зокрема для розв’язування з учнями прикладних задач, особливо враховуючи їх невелику кількість у підручниках, посібниках та майже повну відсутність серед добірок завдань контролюючого характеру.

Дата: 2019-05-29, просмотров: 229.