Ефективна робота теплопроводів визначається не тільки їх геометрією, але й властивостями матеріалу. В першу чергу мова піде про теплопровідність λ, яка входить у всі наведені раніше розрахункові формули кондуктивної теплопередачі.
Матеріал зі значенням теплопровідності вважається теплопровідним. Тобто такі матеріали в загальному випадку здатні забезпечити відвід тепла від нагрітого елемента, запобігаючи його перегріву. Матеріали зі значенням теплопровідності вважаються теплоізоляційними. Розглянемо теплопровідності основних видів матеріалів більш детально.
Теплопровідність газів лежить у межах: (тільки у гелію і водню ці значення у п’ять разів більші). З ростом абсолютної температури Т їх теплопровідність зростає практично лінійно.
Теплопровідність рідин лежить в межах . Проте якщо в асоційованих рідинах (вода та ін.) з ростом Т значення λ зростають згідно параболічного закону, то у неасоційованих рідин (бензол та ін.) з ростом Т значення λ падають згідно параболічного закону.
Теплопровідність металів лежить в межах . У чистих металах при зростанні Т значення λ падає згідно параболічного закону, у сплавах – зростає лінійно.
Значення теплопровідності діелектриків лежить в межах . З ростом абсолютної температури Т значення λ зростає майже параболічно.
Особливе місце займають алмази (природні і штучні). Вони мають особливо високу теплопровідність . Це визначає їх широке застосування в електронній техніці (напівпровідникові прилади, інтегральні мікросхеми, тощо). Алмази дозволяють зменшити теплові опори між кристалами та корпусом.
Для зменшення теплового навантаження елементів електронних приладів потрібно:
· використовувати матеріали з високим значенням λ;
· збільшувати площу контакту елементів теплопроводів;
· зменшувати шляхи теплопотоків.
Для цього потрібно знімати з контактів лаки, фарби, зменшувати шорсткість поверхонь і збільшувати тиск між ними, в якості прокладок використовувати пасти високої провідності, застосовувати шини між елементами і корпусом, замінювати гумові прокладки на свинцеві, застосовувати самонарізні гвинти.
В якості теплопровідних найбільше застосування знайшли такі матеріали:
· мідь і алюміній для зниження контактного опору;
· кадмій і олово для покриття елементів;
· свинець, мідь, алюміній для виготовлення прокладок.
Передача теплової енергії конвекцією
Конвективна тепловіддача
Мова йде про передачу тепла з поверхні твердого тіла в газ або рідину, які переміщуються відносно поверхні. Цей процес суттєво залежить від стану нагрітого середовища. Конвекція завжди супроводжується теплопровідністю
,
де q- поверхнева густина теплового потоку;
- теплопровідна складова;
- конвективна складова.
Якщо швидкість переміщення V газу чи рідини відносно поверхні тіла падає до нуля, то . Якщо ж ця швидкість досягає високих значень, то . У більшості практичних задач .
Процес конвекції формально (математично) зводиться до процесу теплообміну (тіло - рідина). Цей процес називається конвективною тепловіддачею та виражається формулою Ньютона:
, (1.13)
де А - площа поверхні тепловіддачі;
- конвективна теплопровідність, ;
- коефіцієнт конвективної тепловіддачі, .
Формула Ньютона виглядає як лінійна функція, але справа в тому, що коефіцієнт конвективної тепловіддачі складним чином суттєво залежить від багатьох теплофізичних та гідродинамічних факторів. Коефіцієнт конвективної тепловіддачі розглянемо як функцію
, (1.14)
де - температура тіла;
- температура середовища;
- коефіцієнт термічного розширення середовища;
- теплопровідність середовища;
- теплоємність середовища;
- коефіцієнт динамічної в’язкості середовища;
- густина середовища;
- визначальний розмір тіла;
- прискорення земного тяжіння.
В залежності від конкретних умов (1.14) може набути досить простого вигляду. Теорія подібності дає ряд критеріїв, які дозволяють класифікувати задачу визначення αK по значеннях цих критеріїв. Формула (1.14) в залежності від конкретних умов набуває декількох характерних форм, кожна з яких значно простіша базової формули.
Дата: 2019-05-29, просмотров: 214.