При певних обставинах на базі пружних елементів в ЕОМ можуть виникати та розвиватись механічні коливання [3-5, 9]. В окремому елементі може накопичитись значна механічна енергія, яка здатна викликати навіть руйнування. Для визначення рівня коливань складають відповідну динамічну модель.
Динамічна модель – ідеалізований в межах поставленої задачі об’єкт з певними характеристиками у вигляді інерційних, пружних, дисипативних та силових параметрів.
В реальних системах параметри розподілені. Проте динамічну модель досить часто вдається спростити в межах поставленої задачі настільки, що її параметри можна вважати зосередженими в окремій точці (рис. 2.1). Приведені параметри визначаються за певними правилами та методиками. Спочатку вибирається точка приведення. Ії положення характеризується координатою q, яка і вважається узагальненою координатою системи. В точці приведення прикладається приведена сила F та приведена маса m, що рухається на пружній основі з приведеним коефіцієнтом жорсткості с та приведеним коефіцієнтом дисипації ψ елемента розсіювання енергії.
Рис. 2.1. Одномасова динамічна модель
Приведення параметрів базується на принципі незмінності (інваріантності) закону руху q = q(t). Тобто значення приведених параметрів m, F, c, ψ беруться такими, що коливання приведеної точки динамічної моделі q = q(t) співпадають достатньо добре з коливаннями цієї точки в реальній системі. Незмінність (інваріантність) коливного руху точки приведення є критерієм правильного вибору динамічної моделі.
Приведення мас
Кінетична енергія матеріальної точки масою mi, що рухається зі швидкістю vi, дорівнює . Кінетична енергія є скалярною величиною і кінетична енергія системи дорівнює сумі кінетичних енергій складових елементів. З точки зору незмінності закону руху складної системи її масу можна перерозподіляти при умові незмінності кінетичної енергії системи в будь-який момент часу:
.
Звідки приведена маса
, (2.1)
де mi – маса і-тої точки;
vi – швидкість і-тої точки;
– узагальнена швидкість (швидкість точки приведення).
Голономними називають системи, в яких зв’язки обмежують лише положення елементів системи і не обмежують величини їх швидкості. В механіці встановлено, що в голономних системах відношення vi / не залежить від часу, а залежить від положення системи, тобто від значення q. Отже m = m(q).
Приведення сил
З точки зору незмінності закону руху механічної системи дію однієї системи сил можна замінити дією іншої системи сил, якщо потужнoсті цих систем сил будуть однакові у будь-який момент часу. При дії сили на тіло в точці і вектори та утворюють деякий кут (рис 2.2). Потужність сили
Ni = = cos αi.
Ni > 0, якщо 0 αi < π/2,
Ni = 0, якщо αi = π/2,
Ni < 0, якщо π/2 αi < π.
Рис. 2.2. Потужність сили
При дії моменту сил Mj на тіло j (рис. 2.3) потужність моментів сил визначається формулою:
,
де - кутова швидкість тіла j;
Ni < 0, якщо Mj і направлені протилежно;
Ni > 0, якщо Mj і співпадають за напрямом;
Рис.2.3. Потужність моменту сил
Потужність є алгебраїчною величиною, тобто скалярною величиною, і потужність системи сил дорівнюють сумі потужностей кожної складової сили. Умова незмінності потужності в будь-який момент часу при заміні діючої системи сил приведеною силою має вигляд:
.
Звідси знаходимо приведену силу:
.
Дата: 2019-05-29, просмотров: 226.