Общая характеристика установки производства серной кислоты
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Содержание

1. Введение

2. Общая характеристика установки производства серной кислоты

3. Сырьевые источники получения серной кислоты

4. Краткое описание промышленных способов получения серной кислоты

5. Выбор катализатора

6. Обоснование способа производства

7.  Стадии и химизм процесса

8. Термодинамический анализ

9. Кинетика процесса окисления SO2

10. Конденсация серной кислоты

11. Термодинамический анализ процесса конденсации

12. Описание технологической схемы процесса

13. Расчет материального баланса

14. Расчет теплового баланса

15. Расчет контактного аппарата

16. Меры безопасности при эксплуатации производственного объекта

17. Список литературы



Введение

 

Серная кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО3 · т Н2О.

Моногидрат серной кислоты - бесцветная маслянистая жидкость с температурой кристаллизации 10,37 оС, температурой кипения 296,2 оС и плотностью 1,85 т/м3. С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава Н24 · Н2О, Н24 · 2Н2О, Н24 · 4Н2О и соединения с оксидом серы Н24 · SО3 и Н24 ·2SО3.

Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации.

Температура кипения серной кислоты также зависит от ее концентрации, то есть состава системы "оксид серы (VI) - вода". С повышением концентрации водной серной кислоты температура ее кипения возрастает и достигает максимума 336,5 оС при концентрации 98,3 %, что отвечает азеотропному составу, а затем снижается. Температура кипения олеума с увеличением содержания свободного оксида серы (VI) снижается от 296,2 оС (температура кипения моногидрата) до 44,7 оС, отвечающей температуре кипения 100 %-ного оксида серы (VI).

При нагревании паров серной кислоты выше 400 оС она подвергается термической диссоциации по схеме:

 

400оС 700 оС

2 Н24 <=> 2Н2О + 2SО3 <=> 2Н2О + 2SО2 + О2.

 

Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза и составляет в настоящее время более 160 млн. т в год.

Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), а также в производстве красителей (от 2 до 16 %), химических волокон ( от 5 до 15 %) и металлургии (от 2 до 3 %). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности.

 



Стадии и химизм процесса

Процесс получения серной кислоты методом "мокрого" катализа состоит из следующих основных стадий.

1. Получение сернистого ангидрида (SO2) путем сжигания сероводородсодержащего газа по следующей реакции:

 

2H2S + 3O2 = 2SO2 + 2 H2O

 

2. Охлаждение дымовых газов и утилизация тепла реакции горения сероводорода в котле-утилизаторе с получением водяного пара.

3. Окисление сернистого ангидрида до серного ангидрида (SO3) на ванадиевом катализаторе в контактном аппарате (конвертере) R-104 по следующей реакции:

 

2SO2 + O3 = 2 SO3

 

4. Получение серной кислоты (H2SO4) путем конденсации в конденсаторе WSA У-109 по реакции:

 

SO3 + H2O = H2SO4

 

5. Для получения улучшенной серной кислоты (содержание окислов азота N2O3 менее 0,5 ppm) предусмотрена схема подачи гидразингидрата в поток серной кислоты, поступающей на участок концентрирования серной кислоты.

Гидразинсульфат, полученный при добавлении гидразина к серной кислоте, взаимодействует с нитрозилсернистой кислотой, обуславливающей содержание N2О3 в продуктовой кислоте:

 

4NOSO3H + N2H4·         H2SO4 3N2 + 5H2SO4

 

Избыток гидразина окисляется с образованием элементарного азота:


N2H4·H2SO4 + O2      N2 +2H2O + H2SO4

 

Химический состав серной кислоты выражается формулой H2SO4. Структурная формула серной кислоты выглядит следующим образом:

 

 

Относительная молекулярная масса серной кислоты - 98,08 кг/кмоль.

Безводная серная кислота содержит 100 % H2SO4 или 81,63 % SO3 и 18,37 % мас. H2O. Это бесцветная маслянистая жидкость не имеющая запаха с температурой кристаллизации 10,37 ºС. Температура кипения безводной серной кислоты при давлении 1,01·105 Па (760 мм рт.ст.) составляет 298,2 ºС. Плотность при 20 ºС составляет 1830,5 кг/м3.

С водой и сернистым ангидридом серная кислота смешивается в любых пропорциях.

В процессе производства серной кислоты для окисления сернистого ангидрида в серный применяются ванадиевый катализатор. Он представляет собой пористое вещество, на которое нанесено активное комплексное соединение, содержащее пятиокись ванадия V2O5.

В данном случае применяется катализатор марки VK-WSA фирмы "Хальдор Топсе".

Температура зажигания катализатора 400-430 ºС. При температуре выше 620 ºС активность катализатора быстро снижается, т.к. при этом распадается активный комплекс, содержащий пятиокись ванадия (V2O5), а также разрушается структура носителя, что приводит к разрушению катализатора и образованию пыли.

Срок службы катализатора не менее 4 лет.


Термодинамический анализ

Расчет теплового эффекта реакции окисления SO 2 в SO 3 :

 

2SO2 + O2 = 2 SO3

кДж

Q=-ΔН=196,6 кДж

 

Реакция экзотермическая – протекает с выделением тепла.

 

ΔS=

ΔG=ΔH-TΔS=-196,6-298*17,66=-5459,28

 

Энергия Гиббса значительно меньше нуля. Это значит, что реакция термодинамически возможна.

Расчет теплового эффекта реакции конденсации SO 3 :

SO3 + H2O = H2SO4

кДж

Q=-ΔН=174,26 кДж

 

Реакция экзотермическая- протекает с выделением тепла.

 

ΔS= Дж

ΔG=ΔH-TΔS=-174,26-298*-288,07=-86019,12

 

Энергия Гиббса значительно меньше нуля. Это значит, что реакция термодинамически возможна.

 


Таблица 1

Значения термодинамических величин

  2SO2 + O2 = 2 SO3
ΔН -196,6 кДж
ΔS 17,66
Q 196,6
ΔG -5459,28

 

Таблица 2

Значения Кр для реакции окисления SO2 при различных температурах

Температура, 0С Температура, К Константа равновесия, Кр
400 673 539,4
450 723 158,0
500 773 55,5
550 823 22,2
600 873 9,8

 

Вывод: реакция окисления SO2 наиболее полно протекает при невысоких температурах. Из этого следует, реакцию окисления SO2 целесообразно проводить при невысоких температурах. Повышение давления, по принципу Ле-Шателье, влияет положительно.

 


Конденсация серной кислоты

Конденсация парой серной кислоты. В некоторых случаях, газ, используемый для получения серной кислоты, не содержит вредных примесей (мышьяка, фтора). Тогда экономически целесообразно не подвергать такой газ промывке в специальной аппаратуре, а передавать сразу на контактирование. Обычно его не подвергают также осушке, поэтому такой процесс называют мокрым катализом (например, получение серной кислоты из сероводорода). Газ, поступающий на стадию получения серной кислоты, содержит SO3 и Н20, и образование серной кислоты происходит не в результате абсорбции серного ангидрида растворами кислоты, а вследствие образования паров H2SO4 и конденсации их в башне с насадкой или другой аппаратуре, предназначенной для этого процесса.

Процесс конденсации более интенсивен (идет с большой скоростью), чем процесс абсорбции. Кроме того, конденсация протекает при высокой температуре, что облегчает отвод и использование тепла.

При медленном охлаждении газа, содержащего SO3 и Н2О, можно провести процесс конденсации паров серной кислоты без образования тумана. Однако скорость процесса при этом мала и часто экономически выгоднее вести охлаждение с большей скоростью, допуская образование некоторого количества тумана, а затем выделить этот туман из газовой смеси. Чтобы туман легче осаждался в фильтрах, процесс ведут при таких условиях, в которых образуются крупные капли. Этому соответствует невысокое значение возникающего пересыщения и более высокая температура орошающей кислоты, чем при обычном процессе абсорбции ("горячая" абсорбция).

Конденсация кислоты идет внутри стеклянных трубок, в которые поступает технологический газ, содержащий пары кислоты. Внутри стеклянных трубок расположены спирали, служащие в качестве центров для осаждения серной кислоты. На конце каждой трубки установлен патронный фильтр (каплеотбойник), предназначенный для улавливания тумана серной кислоты. Внешняя поверхность труб (межтрубное пространство) охлаждается атмосферным воздухом. Очищенный газ с остаточной концентрацией серной кислоты менее 20 ррм и температурой не более 120 градусов цельсия сбрасывается в дымовую трубу.

Около 35 % (масс.) серной кислоты конденсируется в объеме, при этом пары превращаются в капли жидкости, переходят в туман и уносятся потоком газа.

 Давление пара в котле-утилизаторе поддерживается достаточно высоким, чтобы температура теплообменных поверхностей. котла была выше точки росы серной кислоты (275 °С).

Несконденсированный газ из башни-конденсатора по футерованному газоходу через гидравлический затвор поступает в мокрые электрофильтры. Последние предназначены для улавливания изгазов тумана серной кислоты концентрацией 93— 94 % (масс.). Гидравлический затвор может также служить брызгоуловителем. Очищенный газ выводится в атмосферу. Для первоначального прогрева катализатора в контактном аппарате используют пусковой подогреватель, в котором воздух нагревается за счет сжигания топливного газа.

Использование башни-конденсатора в производстве серной кислоты позволяет снизить количество стадий: в место 4 стадий процесс протекает в 3.

1 стадия - это сжигание сероводорода в котлах-утилизаторах;

2 стадия – это окисление диоксида серы в контактном аппарате

3 стадия – это конденсация паров серной кислоты в конденсаторе.

Данный аппарат позволяет избежать процесса абсорбции, что, в свою очередь, снижает количество аппаратов

 

Расчет константы равновесия

D G =- R * T * lnKp

lgKp =- D G /2,3*8,31*Т

Kp =10- D G /19,113*Т

 

Таблица 5

Значения констант равновесия в зависимости от температуры

Т,0С Т,К DG Kp
100 373 -84989,9 5,8*10-4
200 473 -61056,9 0,528
300 573 -49090,4 45,43
400 673 -37123,9 1,043*103

 

Из таблицы 5 видно, что с увеличением температуры реакции конденсации константа равновесия Кр падает.

Поэтому процесс конденсации целесообразно вести при повышенных температурах.



Расчет теплового баланса

 

Стандартная энтальпия образования ΔH (298 К, кДж/моль)

Стандартная мольная теплоемкость Cp (298 К, Дж/моль·K)

Удельная теплоемкость C (кДж/кг•К)

SO2

-296,90

39,90

0,62

 

O2

0,00

29,35

0,92

 

N2

0,00

29,10

1,04

 

SO3

-439,00

180,00

2,25

 

H2O

-241,82

33,58

1,87

 

H2SO4

-814,20

138,90

1,42

 

C4H10

-124,70

97,78

1,69

 

CO2

-393,51

37,11

 

 

Расчет контактного аппарата

 

Расчет времени контактирования (приведен в кинетике процесса окисления диоксида серы)


τ 1 = ∑Δτ =3,188 сек

τ 2 = ∑Δτ =6,38 сек

 

Суммарное время контактирования газа в контактном аппарате составляет

 

τ =3,188 + 6,38 = 9,568

 

 

м2


Расчет диаметра контактного аппарата

 

 

Диаметр контактного аппарата составляет 8 м

 



Требования безопасности при пуске и остановке технологических систем и отдельных видов оборудования, выводе их в резерв, нахождении в резерве и при выводе из резерва в работу

Основным требованием безопасности при пуске и остановке технологического оборудования является строгое соблюдение процедуры пуска и остановки установки, изложенной в разделе 6 настоящего регламента.

Пуск в работу или вывод в резерв технологических систем производится по письменному распоряжению главного инженера ПГПН, в котором указывается лицо, ответственное за безопасное проведение работ и порядок организации пусковых работ или работ по выводу технологической системы в резерв.

Пуск в работу или вывод в резерв единичного оборудования производится по распоряжению начальника установки.

Оборудование считается резервным, когда оно находится в исправном состоянии, полностью укомплектовано контрольно-измерительными приборами, средствами сигнализации и ПАЗ, испытано в рабочих условиях, имеется заключение механика установки или цеха о его готовности к эксплуатации.

В зимнее время все резервное оборудование должно находиться на прогреве.

Находящееся в резерве оборудование должно подвергаться ежедневному визуальному осмотру, а динамическое оборудование – осмотру и обкатке с установленной периодичностью, но не реже 1 раза в месяц. У центробежных насосов необходимо ежесменно проворачивать вал от руки.

Перед пуском в работу технологическая система должна быть продута азотом с контролем остаточного содержания кислорода не более 0,5 % об. Вывод технологической системы на нормальный технологический режим производится согласно раздела 6 настоящего регламента.

Перед каждым пуском резервных насосов проверить их исправность и положение запорной арматуры на всасе и выкиде насоса.

Ремонт горячего насоса, выделенного в резерв, следует начинать только после того, как температура корпуса его не будет превышать 45 ºС.

При остановке установки на ремонт сероводородный газ направляется на факел.

Контактный аппарат R-104 отдувается от паров серной кислоты горячим воздухом через конденсатор WSA Е-109 и далее в дымовую трубу. Для проведения работ внутри R-104 во время остановки катализатор и контактный аппарат охлаждается воздухом от воздуходувки К-132 по схеме технологического газа. Если катализатор не выгружается из аппарата, в R-104 поддерживается избыточное давление воздуха, подаваемого в аппарат по шланговой перемычке, для исключения контакта катализатора с атмосферным воздухом.

Загрузка и выгрузка катализатора в R-104 осуществляется в соответствии с инструкцией по хранению, загрузке, эксплуатации и выгрузке катализатора серии VK.

Требования к обеспечению взрывобезопасности технологического процесса: принятые границы технологических блоков, значения энергетических показателей и категории взрывоопасности блоков, границы возможных разрушений при взрывах, предусмотренные меры безопасности и противоаварийной защиты

Категория взрывоопасности установки определена по "Общим правилам взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств" (ПБ 09­540­03).

В целях повышения безопасности и ограничения массы продуктов, которые могут истечь в окружающую среду в результате аварий, на установке предусмотрены: быстродействующая отсекающая арматура на линиях перед насосами, стопроцентный резерв по насосам, системы самозапуска насосов и АВР; обвязка теплообменных аппаратов имеет байпасы и отключающую запорную арматуру.

Установка оснащена распределенной системой управления технологическим процессом (РСУ) и системой противоаварийной защиты (ПАЗ). Световая и звуковая сигнализация срабатывает при предельно допустимых значениях технологических параметров.

На установке выделен один взрывоопасный технологический блок – блок сепарации.

Оценка взрывоопасности технологического блока произведена в соответствии с требованиями Общих правил взрывоопасности химических, нефтехимических и нефтеперерабатывающих производств" (ПБ 09-540-03). При этом в технологические блоки включены аппараты, необходимые для осуществления основного технологического процесса. В состав блоков включены трубопроводы между аппаратами блока, а также арматура и приборы КИПиА.

Меры безопасности, принимаемые при ведении технологического процесса с выполнением регламентных операций, должны отвечать требованиям нормативно-технической документации, определяющей порядок и условия безопасного ведения производственного процесса, действий персонала в аварийных ситуациях и осуществления ремонтных работ. Перечень указанной технической документации должен быть утвержден главным инженером ПГПН.

В целях безопасности ведения процесса выполнены следующие мероприятия:

- вся аппаратура и трубопроводы вне помещения, имеющие температуру стенки свыше 60 ºС, а в помещениях свыше 45 ºС, теплоизолируется;

- все оборудование и трубопроводы для защиты от статического электричества заземляются. Установка имеет молниезащиту;

- ограждены все движущиеся части механизмов;

- резервуар В-120 снабжен сигнализаторами верхнего и нижнего уровня.

Обязательный объем периодического контроля состояния и параметров работы установки путем обхода персоналом, а также ее обслуживания включает в себя:

· контроль температур и давлений в аппаратах по приборам, установленным на местах;

· проверку центробежных насосов на отсутствие вибрации и постороннего шума (на исправность);

· проверку герметичности фланцевых соединений, сальниковых уплотнений запорной арматуры и торцевых уплотнений центробежных насосов;

· визуальный контроль за отсутствием вибрации технологических трубопроводов, особенно на выкиде насосов;

· проверку наличия и исправности штатных контрольно-измерительных приборов;

· визуальный контроль за наличием и исправным состоянием ограждений движущихся частей механизмов, площадок обслуживания;

· визуальный контроль за исправным состоянием вентиляционных систем;

· визуальный контроль за исправным состоянием грузоподъемного оборудования;

· проверку пробоотборных устройств на отсутствие утечки продуктов.

В зимний период дополнительно необходимо выполнять следующие операции:

· контроль за функционированием обогрева паром низкого давления аппаратов, технологических трубопроводов, приборов КИПиА;

· контроль за функционированием обогрева теплофикационной водой приборов КИПиА, калориферов приточной вентиляции и технологических трубопроводов;

· контроль за системами охлаждения центробежных насосов, обеспечивая постоянный проток воды;

· контроль на проходимость дренажей и дренажных линий;

· контроль за работой конденсатоотводчиков.

Запрещается снятие блокировок в системах автоматического управления процессом.

При возникновении аварийных ситуаций, вызванных отклонениями параметров работы установки от требований норм технологического режима, изложенных в разделе 4 настоящего регламента, действовать согласно "Плану локализации аварийных ситуаций" (ПЛАС).

Все виды ремонтных работ должны выполняться в соответствии с годовыми и месячными "Графиками проведения планово-предупредительного ремонта". Ремонтные работы должны осуществляться в соответствии с требованиями инструкций, утвержденных Главным инженером Общества:

- инструкция о порядке безопасного проведения ремонтных работ в ООО "ЛУКОЙЛ-ПНОС" (ИБ-025-003-2005);

- инструкция о порядке безопасного проведения огневых работ на объектах ООО "ЛУКОЙЛ-ПНОС" (ПБ-0001-1-2005);

- инструкция о порядке безопасного проведения газоопасных работ на объектах ООО "ЛУКОЙЛ-ПНОС" (Б-025-002-2005);

- инструкция о порядке безопасного проведения земляных работ на территории ООО "ЛУКОЙЛ-ПНОС" (ИБ-255-004-2005).

Отбор проб сероводорода и дренирование сепараторов и емкостей проводить в противогазе стоя спиной к ветру с дублером в противогазе.

Содержание

1. Введение

2. Общая характеристика установки производства серной кислоты

3. Сырьевые источники получения серной кислоты

4. Краткое описание промышленных способов получения серной кислоты

5. Выбор катализатора

6. Обоснование способа производства

7.  Стадии и химизм процесса

8. Термодинамический анализ

9. Кинетика процесса окисления SO2

10. Конденсация серной кислоты

11. Термодинамический анализ процесса конденсации

12. Описание технологической схемы процесса

13. Расчет материального баланса

14. Расчет теплового баланса

15. Расчет контактного аппарата

16. Меры безопасности при эксплуатации производственного объекта

17. Список литературы



Введение

 

Серная кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО3 · т Н2О.

Моногидрат серной кислоты - бесцветная маслянистая жидкость с температурой кристаллизации 10,37 оС, температурой кипения 296,2 оС и плотностью 1,85 т/м3. С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава Н24 · Н2О, Н24 · 2Н2О, Н24 · 4Н2О и соединения с оксидом серы Н24 · SО3 и Н24 ·2SО3.

Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации.

Температура кипения серной кислоты также зависит от ее концентрации, то есть состава системы "оксид серы (VI) - вода". С повышением концентрации водной серной кислоты температура ее кипения возрастает и достигает максимума 336,5 оС при концентрации 98,3 %, что отвечает азеотропному составу, а затем снижается. Температура кипения олеума с увеличением содержания свободного оксида серы (VI) снижается от 296,2 оС (температура кипения моногидрата) до 44,7 оС, отвечающей температуре кипения 100 %-ного оксида серы (VI).

При нагревании паров серной кислоты выше 400 оС она подвергается термической диссоциации по схеме:

 

400оС 700 оС

2 Н24 <=> 2Н2О + 2SО3 <=> 2Н2О + 2SО2 + О2.

 

Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза и составляет в настоящее время более 160 млн. т в год.

Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), а также в производстве красителей (от 2 до 16 %), химических волокон ( от 5 до 15 %) и металлургии (от 2 до 3 %). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности.

 



Общая характеристика установки производства серной кислоты

 

Установка предназначена для получения технической серной кислоты из сероводородсодержащего газа. Сероводородный газ поступает с установок гидроочистки, блока сероочистки газов, установки регенерации амина и отпарки кислых стоков.

Ввод установки в эксплуатацию - 1999 г.

Установка производства серной кислоты рассчитана на переработку 24 тыс. тонн в год сероводородсодержащего газа.

Проектная производительность установки по серной кислоте составляет 65 тыс. тонн в год.

Проект установки выполнен ОАО "ВНИПИнефть" на основании технологии датской фирмы "Хальдор Топсе АС" и ОАО "НИУИФ" г. Москва.

Российская часть установки представлена секцией подготовки сырья, котлами-утилизаторами КУ-А,В,С сжигания сероводородсодержащего газа, блоками деаэрации обессоленной воды, нейтрализации сернокислотных сбросов и обеспечения установки воздухом КИП.

Датской стороной предоставлен блок WSA в составе:

· контактного аппарата (конвертера);

· конденсатора;

· системой циркуляции и откачки серной кислоты;

· системой воздуходувок подачи воздуха на сжигание H2S, охлаждения и разбавления технологического газа;

· системой подачи силиконового масла (блок управления кислотными парами) в технологический газ с целью снижения выбросов SOx в атмосферу.



Дата: 2019-05-29, просмотров: 210.