Алгоритм формирования узловых уравнений
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Для ввода графа или соединений цепи производят последовательную нумерацию:

1) всех узлов от 1 до п=п y -1 (опорному узлу присваивают нулевой номер);

2) всех ветвей от 1 до nв. Как указывалось, всю информацию о структуре графа содержит матрица соединений. Но вводить в память эту матрицу в виде двумерного массива нерационально из-за большого числа нулевых элементов. Поэтому структуру графа вводят с помощью таблицы соединений – одномерного массива троек целых чисел (k, i, j), где k —номер ветви; i—номер узла, откуда ветвь выходит; j—номер узла, куда ветвь входит. Тройки чисел дают ненулевые элементы aik=1 и аjk=-1 матрицы А. По заданной таблице соединений можно получить все необходимые для формирования уравнений матрицы.

Формировать узловые уравнения на ЭВМ можно перемножив произведение первых двух матриц па транспонированную матрицу соединений, получим матрицу узловых проводимостей; перемножение транспониро­ванной матрицы АТ на вектор токов источников дает вектор узловых токов. Действия над матрицами (транспонирование, сум­мирование, перемножение) легко программируется. Упомяну­тые матрицы являются разреженными, т. е. содержат много нуле­вых элементов. Поэтому приведенный алгоритм, включающий мно­го действий умножения на нулевой элемент, применять невыгодно.

Более рационально формировать матрицу Gy и вектор iy непосредственно - по мере поступления данных составных ветвей, исходя из смысла собственной и взаимной проводи­мостей. Вначале матрицу узловых проводимостей и вектор узловых токов принимают равными нулю: Gy=0 и iy=0, затем к ним добавляют элементы, вносимые каждой составной ветвью. Данные ветви (k, i, j) с проводимостью Gk и током источника тока iok войдут в собственные проводимости Gii, Gjj, узлов i, j как добавки Gk, во взаимные проводимости Gij, Gji как добавки Gk и в элементы вектора узловых токов iyi, iyi - как добавки ±i0k. Добавки ветви в матрицу проводимости Gy и вектор тока iy можно представить в виде:

 

 

Если ветвь присоединена к базисному узлу (j=0) то она внесет добавку Gk, только в собственную проводимость Gii и добавку i0k в составляющую iiy вектора узловых токов. Учет данных последней ветви завершает формирование узловых проводимостей и вектора узловых токов.

 

 

Заключение

 

 

  Таким образом в настоящей дипломной работе:

· проведен литературный обзор по моделированию процессов в радиотехнических цепях, методов и средств расчетов токов и направлений в них;

· построена математическая модель разветвленной цепи постоянного тока;

· на языке программирования Турбо Паскаль версии 7.0. в удобном графическом интерфейсе разработана программа построения и анализа электрической схемы цепи постоянного тока;

· приведены методические пояснения при работе с разработанной программой, а также расчетов и анализа электрических цепей;

· программа допускает без принципиальных изменений расширение её функциональных возможностей для расчетов цепей переменного тока, а также моделирования и анализа электромагнитных полей;

· результаты настоящей дипломной работы могут быть использованы в учебном процессе, при разработке электронной аппаратуры в научных лабораториях и на производстве.

        

  В заключение хочу выразить благодарность своим научным руководителям: Цыпишка Дмитрию Ивановичу, Брагарь Луке Федеровичу и заведующиему кафедрой кафедрой общей физики и методики преподавания физики Стамову Ивану Григорьевичу, за методическую помощь, оказанную при написании дипломной работы.


 

Использованная литература

 

1. К.С. Демирчан, П.А. Бутырин. Моделирование и машинный расчет электрических цепей. М., «Высшая школа», 1988г.

2. В. Нерретер. Расчет электрических цепей на ПЭВМ. М., «Энергоатомиздат», 1991г.

3. Пантюшин В.С. Сборник задач по электротехнике и основам электронники. М., «Высшая школа», 1979г.

4. П.Н. Махтанов. Основы анализа электрических цепей. Линейные цепи. М., «Высшая школа», 1990г.

5. «Электротехника». Под редакцией проф. В.С. Пантюшина. М., «Высшая школа», 1976г.

6. В.Г. Абрамов, Н.П. Трифонов, Г.Н. Трифонова. «Введение в язык Паскаль». М., «Наука», 1988г.

7. Ж.Джонс, К. Харроу. «Решение задач в системе Турбо Паскаль». М., «Финансы и статистика», 1991г.

8. К. Боон. «Паскаль для всех». М., «Энергоиздат», 1988г.

9. Д. Прайс. «Программирование на языке Паскаль». Практическое руководство. М., «Мир», 1987г.

 


 



Приложение

 

I. Рисунки с видами экрана при работе с программой....................................................... 20

Рисунок №1. Общий вид экрана...................................................................................................... 20

Рисунок №2. Меню – Файл.............................................................................................................. 21

Рисунок №3. Открытие файла, сохраненного на диске.................................................................. 22

Рисунок №4. Вид экрана с изображением схемы........................................................................... 23

Рисунок №5. Вывод результата вычисления токов в ветвях схемы.............................................. 24

Рисунок №6. Просмотр направления токов в ветвях схемы.......................................................... 25

Рисунок №7. Вид экрана при сохранении схемы в файл................................................................. 26

Рисунок №8. Меню – Окно.............................................................................................................. 27

Рисунок №9. Окно помощи выводимое на экран при нажатии клавиши F1.................................... 29

II. Листинг программы на языке Паскаль............................................................................... 30

1. Основная программа.................................................................................................................. 30

2. Модуль с библиотекой элементов.............................................................................................. 36

3. Модуль вычисления токов ветвей............................................................................................... 48

 



Дата: 2019-05-29, просмотров: 218.