Важнейшие функции гумусовы веществ в биосфере
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Эти частные примеры приводят к необходимости выявления и формулирования важнейших функций гумусовых кислот в биосфере. В наиболее общей форме можно говорить о пяти важнейших функциях: аккумулятивной, транспортной, регуляторной, протекторной и физиологической. Их совокупность позволяет достаточно полно понять экологическую роль гумусовых веществ.

Аккумулятивная функция заключается в накоплении в почвах (и в других самостоятельных природных телах) в форме органических соединений углерода; азота, фосфора, других необходимых для жизнедеятельности элементов, включая микроэлементы. Аккумулятивную функцию не следует рассматривать, как пассивное складирование элементов питания, поскольку накопление может происходить и в почвенных растворах. Может быть, с этих позиций стоило бы выделить еще одну функцию – мобилизационную, но думается, что она перекрывается двумя другими – аккумулятивной и регуляторной.

Транспортная функция заключается в формировании геохимических потоков минеральных и органических веществ, преимущественно в водных средах за счет формирования устойчивых, но сравнительно легкорастворимых (или пептизируемых) комплексных соединений гумусовых кислот с катионами металлов, гидроксидами, некоторыми биоорганическими молекулами или образования адсорбционных соединений гумусовых кислот со слоистыми алюмосиликатами. Именно в таких формах, по-видимому, мигрирует в почвенном профиле и в ландшафтах преобладающая часть органических и неорганических соединений.

Регуляторная функция гумусовых кислот сложна и многопланова. К ней можно отнести:

1. Формирование почвенной структуры и водно-физических свойств почвы;

2. Регулирование равновесий в реакциях ионного обмена, кислотно-основных, окислительно-восстановительных процессах;

3. Регулирование условий минерального питания растений за счет влияния гумусовых веществ на растворимость минеральных компонентов и доступность живым организмам;

4. Регулирование теплового режима почв путем влияния на спектральную отражательную способность почв, на теплоемкость и теплопроводность почвенной массы;

5. Регулирование процессов внутрипочвенной дифференциации химического состава (внутри- и межгоризонтной).

Протекторная функция заключается в способности гумусовых веществ связывать в малоподвижные или труднодиссоциирующие соединения токсичные элементы или соединения. Выше говорилось, что гумусовые кислоты способны снять неблагоприятное влияние пестицидов на культурные растения. Экспериментально показано, что в почвах с большим запасом гуминовых кислот, гумина резко повышаются предельно допустимые концентрации тяжелых металлов; негативное влияние последних на растения проявляется при значительно более высоком содержании, чем в малогумусных почвах. Снимается и негативное влияние избыточных доз минеральных удобрений. В труднодоступные растениям формы соединений связываются не только тяжелые металлы, но и некоторые радиоактивные изотопы, например стронций. Протекторная функция охватывает не только системы почва – растение, но и другие компоненты ландшафта. Так, было показано, что почвы, особенно хорошо гумусированные, выполняют роль геохимического барьера и предупреждают поступление в грунтовые воды многих веществ. Почвенный покров может удерживать значительное количество катионов и анионов и тем самым поддерживать длительное время качество питьевых вод на хорошем уровне, даже в условиях техногенного загрязнения.

Физиологическая функция гумусовых веществ обсуждена выше. Отметим, что ее проявления весьма разнообразны, но изучены явно недостаточно.

При обсуждении гумусовых веществ в биосфере не были упомянуты такие важные аспекты, как их участие в формировании состава атмосферы, потока газов, направленного от почвы в атмосферу, с чем, в частности, может быть связано и появление парникового эффекта. Не упомянуты и многие другие важнейшие природные механизмы, но этому должна быть посвящена специальная монография. Здесь же важно подчеркнуть, что даже не полностью перечисленные функции гумусовых веществ отражают ведущую роль этих соединений во многих экологических связях и соотношениях и позволяют считать, что гуминовые кислоты – не случайный продукт «перегнивания» растительных и других остатков, а необходимый и неотъемлемый компонент системы почва – растение, сформировавшийся в результате совместной и единой эволюции живого и среды обитания, отражающий неразрывное единство этой системы.

Несмотря на недостаточную изученность гумусовых кислот в целом, за последние 10 – 20 лет появились новые материалы и накоплено много оригинальных данных, раскрывающих структуру ГК и ФК. Этому способствовало внедрение новых оригинальных методов для изучения гумусовых кислот. К таким методам относятся новые совершенные модификации ядерного магнитного резонанса, различных видов хроматографии, пиролитических методов, масс-спектрометрии. Существенно меняются представления в области молекулярных пераметров гумусовых кислот, молекулярно-массового распределения, формирования органо-минеральных соединений с участием гумусовых кислот. Все это требует дальнейшего обобщения и осмысления богатого, а зачастую и противоречивого экспериментального материала. [7]. По А.И. Горовой, физиологическая активность гумусовых веществ наиболее полно проявляет себя при неблагоприятных воздействиях. Физиологическая активность гумусовых веществ важна и интересна не только с агрономических или медицинских позиций. Это свойство заставляет задуматься о природе физиологического действия, а следовательно, о строении, молекулярных формулах гуминовых кислот (ГК) и фульвокислот (ФК). Высокая и многопрофильная активность ГК и ФК обусловлена прежде всего больших набором функциональных групп, причем не только таких обычных, как карбоксильные, фенольные, спиртовые, но также хинонные, аминные, амидные, способные к образованию электровалентных и ковалентных связей, внутрикомплексных соединений. Эти группы обеспечивают регулирование соотношения свободных и комплексных ионов как в почвенном растворе, так и во внутриклеточной среде. Разнообразие и сложность функций, несомненно, связаны с полихимизмом гумусовых кислот, молекулы которых различаются по размерам, а функциональные группы образуют спектр соединений, различающихся по прочности связей и ближайшему окружению удерживаемых катионов металлов. Полидисперсность и полифункциональность обеспечивают высокую буферность гумусовых систем в отношении кислотно-основных, окислительно-восстановительных и многих других реакций.

Такая система неизбежно должна активно регулировать геохимически потоки металлов и некоторых органических соединений в биосфере. Отталкиваясь от физиологической активности ГК и ФК, мы неизбежно приходим к представлениям о единстве живого и гумуса в понимании В.И. Вернадского, к положению о неизбежном формировании системы гумусовых веществ, обеспечивающей современные формы наземной жизни.

Функции органических соединений в почвах разнообразны, а зачастую и противоречивы. Низкомолекулярные вещества обычно легко доступны микроорганизмам и участвуют в процессах мобилизации минеральных составляющих почвы, извлекая многие элементы из труднорастворимых соединений. Гуминовые кислоты выполняют в значительной мере консервативную роль, придавая почвам устойчивые признаки, существующие длительное время и обусловливая их многие важнейшие свойства и функции: запас гумуса, емкость, емкость катионного обмена и пр.

Устойчивые запасы гумуса в почвах обусловлены, прежде всего, гуминовыми кислотами и гумином. Отсюда вытекает общая принципиальная установка: для накопления в почвах гумуса недостаточно привнесения в почву дополнительных количеств органического вещества, будь то в форме растительных остатков, навоза или других органических материалов. Одновременно с внесением должны быть созданы условия, обеспечивающие возможно полную гумификацию органических соединений, т.е. превращение их преимущественно в гуминовые кислоты или в гумин. Это обусловливает важнейшую задачу одновременного и сопряженного изучения строения гуминовых кислот и процесса гумификации. Сопряженный анализ позволяет не только точно и глубоко отвечать на теоретические вопросы, но и разрабатывать эффективные мелиоративные приемы с использованием органических удобрений.

Забота только об устойчивых, консервативных свойствах и фракциях почвенного гумуса явно недостаточна при решении задач повышения плодородия и биологической продуктивности.

Почвенная биота нуждается в постоянно пополняемом запасе лабильных органических веществ. Это достигается как поступлением «свежего» органического вещества, так и частичной мобилизацией запасов специфических гумусовых веществ. Процессы мобилизации могут осуществляться путем химического и ферментативного гидролиза, окисления или восстановления гумусовых веществ, их фотохимической деструкцией, что наиболее интенсивно протекает в поверхностном слое верхнего, гумусного горизонта. Мобилизация органического вещества может сопровождаться переходом соединений в химически и физиологически активные формы. Этим, в частности, можно объяснить несоответствие между стимулирующим эффектом малых доз препаратов гуматов натрия и высоким содержанием малоактивных гуминовых кислот и гуматов в почве. Было высказано предположение, что в процессе выделение из почв и подготовки препаратов гуминовых кислот и гуматов натрия молекулы ГК видоизменяются и переходят в активированную форму. В частности, в щелочной среде под воздействием кислорода воздуха повышается степень окисленности гуминовых кислот, повышается концентрация парамагнитных центров (свободных радикалов) и хиноидных групп, снижаются молекулярные массы. Особенно быстро и активно эти изменения происходят в условиях достаточного освещения, что говорит о фотохимической природе явления. В щелочной среде молекулы гуминовых кислот приобретают «раскрытую» конфигурацию, и тогда боковые цепи и функциональные группы получают больше возможностей для участия в различных реакциях.[7].

 


2.3 Методы определения меди

 

Медь относится к числу тех металлов, которые обладают хромофорными свойствами, поэтому среди многочисленных фотометрических методов определения меди имеются как методы, основанные на использовании окрашенных реагентов с хромофорными группами, так и методы, в которых применяют бесцветные реагенты. Большинство методов обладает высокой селективностью. Это подробно описанные ниже дитизоновый, дитиокарбаматный, купроиновый и купризоновый методы или метод с применением бис-(цикло-гексанон)оксалилдигидразона; наибольшей чувствительностью обладает дитизоновый метод. При помощи купризона определяют медь в водной фазе, остальные перечисленные методы относятся к экстракционно-фотометрическим.


Дитизоновый метод

В кислой среде и в присутствии избытка дитизона ионы меди образуют фиолетовый первичный дитизонат Cu(HDz)2 — устойчивое соединение, растворимое в неполярных растворителях (СС14, СНС13). Эта реакция положена в основу чувствительных фотометрических методов определения меди. В щелочной среде образуется менее интенсивно окрашенный желто-коричневый вторичный дитизонат CuDz, также растворимый в СС14 и СНС13. Вторичный дитизонат меди(П) может образоваться и в нейтральной или кислой среде при недостатке дитизона.

Молярный коэффициент поглощения раствора первичного дитизоната меди Cu(HDz)2 в четыреххлорпстом углероде равен 4,52*104 при 550 нм, удельное поглощение 0,71.

Реакция образования дитизоната меди протекает довольно медленно, поэтому при экстракции необходимо продолжительное встряхивание и рекомендуется применять механическую качалку. На скорость экстракции благоприятное действие оказывает увеличение концентрации дитизона в органической фазе и низкая кислотность водной среды.

Оптимальная скорость экстракции наблюдается в том случае, когда кислотность анализируемого раствора соответствует рН 1. При этой кислотности и применении 0,001—0,002.%-ного раствора дитизона еще не экстрагируются висмут и другие металлы, реагирующие с дитизоном. Вместе с медью дитизоном экстрагируются благородные металлы Pt, Pd, Au, Ag и Hg, реагирующие с дитизоном. Обычно содержание этих металлов (это чаще всего ртуть и серебро) в исследуемых растворах очень мало, намного меньше, чем содержание меди, и их можно удалить из экстракта в четыреххлористом углероде путем промывания раствором иодида кадия (например, 1%-ного), который дает с ними прочные иодидные комплексы. При наличии хлоридов в исследуемом растворе серебро не экстрагируется. Присутствие в растворе цитратов или тартратов несколько мешает экстракции меди дитизоном.

Удалить благородные металлы, мешающие определению меди, можно предварительной экстракцией их дитизоном из 1 н. раствора минеральной кислоты. Все благородные металлы, кроме палладия, образуют дитизонаты желто-оранжевого цвета, причем скорость экстракции их намного выше скорости экстракции меди. Исследуемый раствор извлекают небольшими порциями раствора дитизона в четыреххлористом углероде до тех пор, пока органический слой перестанет быстро приобретать желтый оттенок и после продолжительного встряхивания станет фиолетовым.

Для фотометрического определения меди можно использовать одноцветные или двуцветные дитизоновые методы. Вымывание свободного дитизона из экстракта при одноцветном методе следует проводить сильно разбавленным раствором аммиака и встряхивать недолго, чтобы избежать частичного превращения первичного дитизоната Cu(HDz)2 , во вторичный CuDz.

Дитизоновый метод применяют для определения меди в различных материалах, в частности в олове, титане и его сплавах, соединениях урана, биологических материалах.

Дитиокарбаматный метод

При добавлении к раствору (при рН 4 — 11), содержащему небольшое количество ионов меди(П), водного раствора диэтилдитиокарбамата натрия (Na-ДДТК, купраль, карбамат) раствор окрашивается в желто- коричневый цвет вследствие образования коллоидного раствора труднорастворимого комплекса меди. В этом комплексе соотношение Си : ДДТК равно 1:2. Медь соединяется с молекулами реагента посредством двух атомов серы, образуя редко встречающееся внутрикомплексное соединение с четырехчленными циклами. Добавка к раствору защитного коллоида (например, гуммиарабика) делает псевдораствор более устойчивым и позволяет фотометрически определять медь в водной фазе.

В более точном и более чувствительном, чаще используемом экстракционном варианте метода используется растворимость комплекса в органических растворителях, например четыреххлористом углероде, хлороформе, трихлор-этилене, амилацетате, изоамиловом спирте. Экстракция карбамата меди протекает легко, и полученные растворы довольно устойчивы.

Молярный коэффициент погашения раствора комплекса в четыреххлористом углероде при макс = 436 нм составляет 1,4*104 (удельное поглощение 0,22).

Определению меди при помощи диэтилдитиокарбамата натрия мешают металлы, образующие окрашенные карбаматные комплексы, главным образом Fe, Bi, Mn, Ni, Co, Cr, Mo, U. Эффективным маскирующим веществом, значительно повышающим селективность метода, является комплексон III. В тартратной или цитратной среде при рН 8—9 этот реагент маскирует Fe, Mn, Ni, Со, а также Cd, Pb, Zn и РЗЭ, образующие с диэтилдитиокарбаматом бесцветные комплексы. Среди тех металлов, которые дают окрашенные соединения с карбаматом, не маскируются, кроме меди, только висмут и таллий (Ш). После восстановления таллия до Т1(1) он уже не мешает определению меди. Из экстракта, содержащего карбамат меди и висмута, 5 н. раствором соляной кислоты можно извлечь висмут (встряхивать в течение 30 сек). Цианиды разлагают карбамат меди, а комплекс висмута остается неизмененным.

Определению меди, кроме цианидов, мешают также гипосульфиты, окислители и восстановители, которые могут восстановить Cu(ll) до Cu(I) или окислить диэтилдитиокарбамат натрия.

Определение меди усложняется также в связи с тем, что диэтилдитиокарбамат натрия нерастворим в органических растворителях. Кроме того, этот реагент довольно легко разлагается в кислых растворах на диэтиламин и сероуглерод.

Иногда вместо диэтилдитиокарбамата натрия используют диэтилдитио-карбамат диэтиламмония, который растворяется в хлороформе и устойчив к действию кислот.

Исследуемый раствор, содержащий Си(П), осаждают хлороформным раствором реагента.

Шедивец и Вашак избежали мешающего действия некоторых металлов (например, железа, марганца, цинка) на определение меди путем замены диэтилдитиокарбамата натрия карбаматом свинца. При встряхивании раствора этого реагента в хлороформе с водным раствором, содержащим медь, происходит реакция замещения. Этой реакции могут мешать металлы, комплексы которых более прочны, чем комплекс свинца; к числу таких металлов относятся Hg, Ag, Tl(III) и частично Bi. Креймер и Ломехов исследовали кинетику этой реакции.

Дибензилдитиокарбамат цинка менее селективен, чем диэтилдитиокарбамат свинца, но более устойчив в сильно кислой среде, он растворяется в четыреххлористом углероде и хлороформе. С помощью этого реагента можно экстрагировать медь из 1—2 н. соляной или серной кислоты.

Кроме указанных дитиокарбаматов для фотометрического определения меди рекомендуют также пирролидиндитиокарбамат натрия, пиперазин-бис-(дитиокарбамат) натрия и диэтанолдитиокарбамат калия.

Диэтилдитиокарбамат натрия используют для определения меди в цинке, кадмии, свинце, сурьме, титане и цирконии и других металлах, графите, органических соединениях, нефти, сточных водах, воде, почве и растительных материалах.

Метод с применением диэтилдитиокарбамата свинца используют для определения меди в различных металлах, растворах никеля и кобальта и воде.

Дибензилдитиокарбамат цинка нашел применение при определении меди в органических соединениях, пищевых продуктах, растительных материалах, воде и фосфатах.

Дата: 2019-05-28, просмотров: 186.