Характеристики МДП-транзистора в области плавного канала
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Рассмотрим полевой транзистор со структурой МДП, конфигурация и зонная диаграмма которого приведены на рис. 1.8. Координата z направлена вглубь полупроводника, y - вдоль по длине канала и х - по ширине канала.

Получим вольт-амперную характеристику такого транзистора при следующих предположениях:

1. Токи через р-n-переходы истока, стока и подзатворный диэлектрик равны нулю.

2. Подвижность электронов μn постоянна по глубине и длине L инверсионного канала и не зависит от напряжения на затворе VGS и на стоке VDS.

3. Канал плавный, то есть в области канала нормальная составляющая электрического поля Ez существенно больше тангенциальной Еу [15].


Рисунок 1.8 - Схема МДП-транзистора для расчета токов в области плавного канала и зонная диаграмма в равновесных условиях

 

Ток в канале МДП-транзистора, изготовленного на подложке р-типа, обусловлен свободными электронами, концентрация которых n(z). Электрическое поле Еу обусловлено напряжением между истоком и стоком VDS. Согласно закону Ома, плотность тока [5].:

                  (1.2)

 

где q - заряд электрона, μn - подвижность электронов в канале, V- падение напряжения от истока до точки канала с координатами (x, y, z).

Проинтегрируем (1.2) по ширине x и глубине z канала. Тогда интеграл в левой части (1.2) дает нам полный ток канала IDS, а для правой части получим:

                (1.3)


Величина  есть полный заряд электронов в канале на единицу площади:

 

 

Тогда:

                         (1.4)

 

Найдем величину заряда электронов Qn. Для этого запишем уравнение электронейтральности для зарядов в МДП-транзисторе на единицу площади в виде [3]:

 

Qm= Qox + Qn+ QB.                               (1.5)

 

Согласно (1.5), заряд на металлическом электроде Qm уравновешивается суммой зарядов свободных электронов Qn и ионизованных акцепторов QB в полупроводнике и встроенного заряда в окисле Qox. [10].

 


Рисунок 1.9 - Расположение зарядов в МДП-транзисторе.

 

На рис. 1.9 приведена схема расположения этих зарядов. Из определения геометрической емкости окисла Сox следует, что полный заряд на металлической обкладке МДП-конденсатора Qm равен:

 

Qm=Cox·Vox,                                          (1.6)

 

где Vox - падение напряжения на окисном слое, Сox - удельная емкость подзатворного диэлектрика.

Поскольку падение напряжения в окисле равно Vox, в полупроводнике равно поверхностному потенциалу ψs, а полное приложенное к затвору напряжение VGS, то:

 

VGS-Δφms= Vox + ψs= Vox + ψs0+ V(y),      (1.7)

 

где Δφms - разность работ выхода металл - полупроводник, ψs0 - величина поверхностного потенциала в равновесных условиях, т. е. при напряжении стока VDS = 0.

Из (1.5) - (1.7) следует:

 

Qn=Qm- Qox-QB= Cox[VGS-Δφmss0 + V(y)] - Qox- QB (1.8)

 

Поскольку в области сильной инверсии при значительном изменении напряжения на затворе VGS величина поверхностного потенциала меняется слабо, будем в дальнейшем считать ее постоянной и равной потенциалу начала области сильной инверсии ψs0 = 2φ0. Поэтому будем также считать, что заряд акцепторов QB не зависит от поверхностного потенциала. Введем пороговое напряжение VТ как напряжение на затворе VGS, соответствующее открытию канала в равновесных условиях: Vt≡Vgss = 2φ0, VDS = 0).

При этом Qn(VDS = 0) = 0.

Из (1.8) следует, что [5]:

 

         (1.9)

 

Тогда с учетом (6.8):

 

Qn=C[VGS-VT -V(y)].                            (1.10)

 

Подставляя (1.10) в (1.4), разделяя переменные и проведя интегрирование вдоль канала при изменении y от 0 до L, а V(y) от 0 до VDS, получаем:

      (1.11)

 

Уравнение (1.11) описывает вольт-амперную характеристику полевого транзистора в области плавного канала.






Дата: 2019-05-28, просмотров: 222.