В основе работы полевых транзисторов с изолированным затвором лежат свойства МДП-структуры (рис. 1.1).
Рисунок 1.1 - Пример МДП-структуры.
По существу эта структура представляет плоский конденсатор одной из обкладок которого служит металл (затвор), второй полупроводник. Особенность такого МДП конденсатора по отношению к классическому МДМ конденсатору в том, что в объеме полупроводника заряд может быть связан с носителями разной физической природы и разной полярности: свободными электронами и дырками, заряженными положительно ионизованными донорами, заряженными отрицательно ионизованными акцепторами, а так же заряженными дефектами. В МДП-структуре в отличие от p-n перехода существует гетерограница разделяющая две среды с различной структурой это, например, граница, разделяющая полупроводник и его окисле или другой диэлектрик или полупроводник и воздух (вакуум). На свободной границе полупроводника имеется большое количество оборванных связей стремящихся захватить заряд из объема полупроводника, а так же связей вступивших в реакцию с сооседней средой и пассивированных этой средой, кроме того, на поверхности могут находиться посторонние примесные атомы и ионы. Таким образом, на свободной поверхности и гетеропереходе металл-диэлектрик уже в начальном состоянии может находиться некоторый заряд, который индуцирует равный ему по величине и противоположный по знаку заряд в объеме полупроводника [13].
Если зарядить одну из обкладок МДП конденсатора - затвор, то на второй - полупроводниковой обкладке должен появиться заряд равный по величине и противоположный по знаку, который будет связан с поверхностными состояниями, ионизованными атомами примеси и свободными носителями заряда.
Рисунок 1.2 - Изменение поверхностной проводимости полупроводнка в МДП структуре:
1 - полупроводник n типа,
2 - собственный полупроводник,
3 - полупроводник p типа.
Если индуцированный внешним полем заряд на полупроводниковой обкладке превышает изменение заряда на поверхностных состояниях, то в приповерхностной области полупроводника происходит изменение концентрации свободных носителей заряда, что сопровождается изменением поверхностной проводимости (см. рис. 1.2) и соответственно протекающего вдоль поверхности тока, в случае если имеется направленное вдоль поверхности поле, как это показано на вставке рис. 1.2 [5].
В той приповерхностной полупроводниковой области, где существует электрическое поле, имеется обедненная носителями область пространственного заряда, аналогичная по свойствам области ОПЗ pn перехода, работающая как диэлектрик. При изменении потенциала на металлической (затворе) обкладке МДП конденсатора будет изменяться заряд ОПЗ и соответственно ширина обедненной области. При этом будет изменяться емкость МДП-структуры. Зависимости емкости МДП-структур от напряжения показаны на рис. 1.3.
Рисунок 1.3 - Изменение емкости МДП-структур от напряжения на затворе:
1 - полупроводник n типа,
2 - собственный полупроводник,
3 - полупроводник p типа.
Емкость МДП-структуры можно рассматривать как состоящую из двух последовательно включенных емкостей: емкости диэлектрика - Сд и емкости слоя пространственного заряда в полупроводнике Спп.
(1.1)
Если Сд >> Спп, то можно с хорошим приближение считать, что емкость структуры определяется емкость ОПЗ, т.е. С = Спп.
Если Спп >> Сд, то приближенно можно считать, что С = Сд, поэтому максимальное значение емкости на рис. 1.3 ограничено линией С = Сд.
Следует обратить внимание на то, что на всех кривых рис. 1.2 и рис. 1.3 имеются точки минимума. Это точки соответствуют случаю минимальной поверхностной проводимости, которая имеет место, когда на поверхности концентрации электронов и дырок близки к собственной и равны друг другу, тогда увеличение потенциала затвора относительно значения соответствующего точке минимума должно обогащать поверхность дырками, а уменьшение потенциала относительно потенциала точки минимума должно обогащать поверхность дырками. При этом соответственно с разных сторон от точки минимума должен наблюдаться разный тип проводимости в приповерхностной области [4].
Дата: 2019-05-28, просмотров: 252.