Легированные инструментальные стали
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Плазменному упрочнению подвергались стали 9ХФ, 9ХФМ, 9ХС, 9Х5ВФ, 6ХС, 55Х7ВСМФ, 7ХНМА, 8Н1А, ИХ, 13Х, ХВГ с оплавлением и без оплавления поверхности.

При упрочнении без оплавления поверхности в зоне оплавления возникает мелкодисперсная структура высокоуглеродистого мартенсита и остаточного аустенита. Вследствие высокой скорости плавления и кристаллизации, в зоне оплавления наблюдаются нерастворенные карбиды. Высокая легированность мартенсита в зоне оплавления обеспечивает большие значения микротвердости (12000-14000 Мпа). Однако, в большинстве случаев в зоне оплавления появляются микротрещины, что приводит к сколу и выкрашиванию упрочненного слоя.

Плазменное упрочнение без оплавления поверхности легированных инструментальных сталей приводит к формированию в упрочненной зоне сильно неодно­родной структуры. Вследствие незавершенности процессов аустенизации в упроч­ненном слое образуются мартенсит + нерастворенный цементит + остаточный аустенит. (Так в стали 9ХФ и 9ХФМ количество остаточного аустенита достигает 35 %, а в стали 55Х7ВСМФ до 40 %. Количество остаточного аустенита по глубине упрочненной зоны уменьшается и уже на глубине 80-100 мкм не превышает его со­держание в данной стали при обычной объемной закалке.

 

 Табл. 2.8.

 Твердость стали после обработки холодом /жидкий азот/

 

 

Марка стали

Микротвердость, МПа

Исходная После плазменного упрочнения Плазменное упрочнение + обработка холодом
9ХФ 9ХФМ ХВГ 55Х7ВСМФ 9ХС 8Н1А 13Х 9Х5ВФ 2600-2800 2600-2800 2000-2500 2800-3000 2200-2800 2500-2800 9500-10100 9500-11000 10000-11000 10500-11200 13000-14000 11500-12000 12000-12500 11000-11800 12200-12800 12200-13800 12200-13100 11000-13000 14500-15400 12500-13800 12500-13800 12000-13800 13100-13500 14000-14800

 

Для устранения остаточного аустенита после плазменной закалки была прове­дена обработка холодом.Известно, что в легированных инструментальных сталях точка конца мартенситного превращения лежит ниже комнатной температуры. При дальнейшем охлаждении в жидком азоте этих сталей происходит мартенситное превращение, и количество остаточного аустенита заметно снижается, табл. 2.8.

Проведенные исследования показали, что обработка холодом приближает легированные инструментальные стали по твердости к твердым сплавам ( НRСЭ65- 80) и находится на одном уровне

с быстрорежущими инструмен­тальными сталями(НRСэ65-69).

Однако использование этой

Рис. 2.22. Распределение микротвердости по глубине упрочненной зоны на стали после плазменного упрочнения (без оплавления)

 

операции в практических целях очень затруднительно и требует дальнейших исследований.

При упрочнении легированных инструментальных сталей отмечается «эффект» максимальной твердости на некоторой глубине от поверхности, рис. 2.22.Призакалкелегированных инструментальных сталей

Требуются меньшие скорости охлаждения, чем для углеродистых, т.к. аустенит в них более 13Х(1), стали 9ХС(2), стали 9ХФМ(3) устойчив против распада. Легирующие элементы способны образовывать с углеродом соеди­нения (в виде карбидов, которые удерживают углерод в труднорастворимых соеди­нениях), препятствующие насыщению аустенита. Однако влияние легирующих элементов на микротвердость упрочненного слоя уменьшается с увеличением со­держания углерода. Стали, содержание хрома в которых превышает 2-3 %, упроч­няются менее эффективно в связи с сильным влиянием легирующих примесей на процесс закалки.

 

Быстрорежущие инструментальные стали

Плазменному упрочнению с оплавлением и без оплавления поверхности подвергается уже готовый инструмент, прошедший окончательную термическую обработку, изготовленный из различных марок стали Р18, Р6М5, РУМ4К8.

При упрочнении с оплавлением поверхности стали Р18 в зоне оплавления происходит растворение карбидов, повышается степень легирования и устойчи­вость аустенита. Как следствие этого твердость оказывается ниже, чем твердость стали после обычной термической обработки.

 

Табл. 2.9.

Структура и фазовый состав сталей после плазменной закалки и печного отпуска

 

 Марка стали

Способ обработки

Структура

Фазовые составляющие

Твердый раствор

Карбиды

Кол-во фаз,%

 Состав по массе, %

 

 Тип карбида и кол-во %

 Суммарный состав по массе, %

α γ C W Mo V Cr Co Fe C W Mo V Cr Co Fe

 

Р6М5*

 

 

Р6М5**

  Плазменная закалка

Мартенсит + остаточный аустенит + карбид

64. 1 26.8   0.4   3.35   3.1   1.1   4.2   -       87.85   МС-1,1, М6С-8,0 4.0 31.5 22.5 7.3 3.4  - 31.3   Плазменная закалка + отпуск при 570º С 86.2  -   0.2   2.4   1.6   0.6   4.2   -       91.0   МС-2,6, М6С-7, М2С-3,1 М27С-1,1 М23С6 , М7С3 , М3С 6.1 26.3 30.5 9.1 6.5  - 21.5 Р9М4К8*   Плазменная закалка 62.0 29.0   0.6   5.0   3.0   1.7   3.7   8.9       77.1   МС-1,8, М6С-7,2 интериметаллид   4.4 4.03 19.5 8.1 3.3 2.2 22.2 Р9М4К8** Плазменная закалка + отпуск при 580º С 86.2  -   0.2   3.2   1.8   1.2   2.9   9.2       81.5   МС-3,8, М2С-3,6 М6С-7,4 М27С6 , М7С3 ,   5.8 39.4 20.6 8.0 8.0 2.4 15.8

* Мартенсит + аустенит (твердый раствор)

**Отпущенный мартенсит (твердый раствор), остаточный аустенит в пределах ошибки измерения

 

При упрочнении без оплавления поверхности, структура закаленного слоя состоит из мелкоиголъчатого мартенсита + остаточного аустенита + карбиды. Твердость стали (9500-12300 МПа) превосходит твердость после обычной термообра­ботки, рис.2.23.

 Для быстроорежущих сталей также возможно использовать обработку холо­дом после плазменного упрочнения, что повышает твердость упрочненной зоны на стали Р6М5 с 10000 до 12000 Мпа, на стали Р18 до 11500 Мпа, Р9М4К8Ф до 13800 Мпа.

Для повышения твердости закаленной быстрорежущей стали после плазмен­ного упрочнения можно использовать отпуск, что благоприятно изменяет структуру и фазовый состав стали, табл. 2.9.

 

 

Рис. 2.23. Микротвердость стали Р18(1), Р6М5 (2) и Р9М4К8Ф (3) после плазменного упрочнения без плавления

При упрочнении быстрорежущих сталей наиболее эффективно упрочнение без оплавления поверхностности. Оптимальные значения плазменного упрочнения необходимо подбирать для каждого инструмента из той же стали. Кроме того, повышение твердости предварительно закаленной стали очень сильно зависит от длительности плазменного нагрева (зависимость для быст­рорежущих сталей НV=f(t)) имеет экстремум), т.к. длительность нагрева определя­ет скорость фазовых и структурных превращений в упрочненном слое.

Дата: 2019-05-28, просмотров: 279.