На перших етапах фізики відкривали окремі наслідки закону збереження енергії, не підозрюючи про існування загального закону.
Першим наслідком був закон важеля, який можна сформулювати так: добуток сили на відстань, пройдену точкою прикладання сили, є величина стала. Це було відомо ще Архімеду. Знаючи закон збереження енергії в формі “ кількість отриманої енергії рівна витраченій роботі”, легко звести до нього закон важеля. Дійсно робота обчислюється як добуток сили на переміщення. Якщо цей добуток сталий, то збільшуючи шлях, ми можемо на стільки ж зменшити силу і навпаки.
Далі доцільно звернутися до наступного відкриття Галілея. Під час своїх дослідів з падінням тіл по похилій площині Галілей виявив, що швидкість, яку має тіло біля основи площини не залежить від кута її нахилу, отже, і від довжини шляху, а залежить лише від висоти, з якої падає тіло.
Це вражаюче відкриття зацікавило Галілея, і він поставив завдання дослідити, чи існує незалежність швидкості від довжини шляху для криволінійних форм шляху. З цією метою він винайшов маятник, який отримав його ім’я (див. нижче).
Наступний крок до відкриття закону збереження механічної енергії зробив Гюйгенс. Він вперше поставив завдання дослідити закони механічного руху системи тіл. Вивчення коливань складних маятників привело його до наступного висновку: “ Якщо які-небудь важкі тіла рухаються внаслідок дії на них сили тяжіння, то їх загальний центр тяжіння не може піднятися вище того рівня, на якому він знаходився на початку руху.”
Важливість цього результату була усвідомлена вченими. Німецький філософ і математик Г.Лейбніц (1646 – 1716) звернув увага на те, що із законів вільного падіння випливає пропорційність висоти, якої досягло тіло, що коливається, при незмінній масі, квадрату його швидкості. Оскільки під час коливання без тертя висота, з якої падає тіло, рівна висоті підняття, то, отже, і зберігається добуток . Лейбніц назвав цей добуток “живою силою” і розвинув думку про те, що Всесвіту властивий запас “живих сил”, який зберігається.
Звідки пішов термін “жива сила”? Безпосередній досвід показав, що сила може бути викликана тілом, що знаходиться в спокої, наприклад, стисненою пружиною, тілом, яке тисне на опору і т. д. З іншого боку, силова дія може бути створена рухомим тілом.
Природньо було в першому статичному випадку говорити просто про силу ( мертву ) , а у другому, щоб підкреслити її належність до руху, зміни, про силу живу.
Слід відмітити, що в деяких курсах теоретичної механіки до цих пір зберігається цей термін, і закон збереження механічної енергії фігурує під назвою “ теореми про живі сили”.
Збереження “живої сили” було встановлено в дослідах Гюйгенса зі співударом куль. У відомій 11-й теоремі про співудар тіл Гюйгенс писав “ При ударі двох тіл сума добутків їх мас на квадрати їх швидкостей однакова до удару і після нього.”
Особливу увагу приділили принципу збереження живих сил Йоган та Даніїл Бернуллі. В творах 1750р. Даніїл Бернуллі розглядає загальний випадок системи частинок, між якими діє сила притягання, і показує. Що незалежно від шляхів, по яким переміщаються частинки, сума їх “живих сил” залишається сталою. “ Природа, - говорить він, - ніколи не зраджує великому закону збереження “живих сил.”
Ще більш глибокі уявлення ми знаходимо в праці Й.Бернуллі “Міркування про закони передачі руху.” Він підкреслює, що “жива сила” зберігається вічно, що цей всезагальний закон природи дійсний в тому випадку, коли на перший погляд спостерігаються відхилення від нього. “ Якщо, наприклад, - пише Бернуллі, - тіла не абсолютно пружні, то здається, що при їх стисненні, яке не супроводжується поверненням до початкового стану, частина живих сил втрачається. Але ми повинні собі уявити, що стиснення відповідає згинанню пружної пружини, якій перешкоджають розігнутися, так що вона не віддає тих живих сил, які були їй надані, але зберігає їх в собі.”
Тут ясне відчуття переходу кінетичної енергії в потенціальну енергію пружної деформації і внутрішню енергію тіла. Однак до чіткого уявлення про потенціальну енергію і чіткого формулювання закону збереження механічної енергії фізиці потрібно було ще більше 100 років. Поняття потенціальної енергії в чіткій формі з’явилося в 1847р. в книзі великого німецького фізика Гельмгольца “ Про збереження сили”.
Кінетичну енергію Гельмгольц називав, як і раніше, живою силою, потенціальна енергія з’явилася під іменем “ кількості сил напруги”. Все розмаїття форм енергії Гельмгольц зводив до двох форм. Перша – узагальнена форма: кількість затраченої роботи рівна кількості отриманої енергії. Друга – власна в сучасній термінології формулюється так: сума кінетичної і потенціальної енергії в замкненій системі залишається завжди сталою.
Слід відмітити, що поняття роботи склалось раніше, ніж поняття енергії. Для вимірювання роботи еталоном була робота підняття вантажу певної маси на певну висоту. У Гельмгольца читаємо: “ Кількість роботи, яку отримуємо чи затрачаємо, може бути, як відомо, виражена як робота підняття на певну висоту h вантажу m; робота рівна mgh…Щоб піднятись вільно на висоту h, тіло повинне мати початкову швидкість ; цю ж швидкість тіло отримує під час зворотнього падіння на Землю. Таким чином, .”
Отже під час висвітлення матеріалу по даній темі потрібно звернути увагу на наступне.
1. При висвітленні зв’язку роботи та енергії природно слідувати історичному розвитку події. Спочатку формується поняття роботи, потім встановлюється, що будь-яка робота має певний енергетичний ефект: робота прискорюючої сили призводить до виникнення рівної кількості “живої сили” – кінетичної енергії, робота проти сил тяжіння чи пружності призводить до появи потенціальної енергії, робота проти сили тертя – до приросту внутрішньої енергії.
Відомий зв’язок між законами динаміки і законом збереження кількості руху.
Аналогічний зв’язок доцільно підкреслити і для закону збереження механічної енергії. У випадку прямолінійного руху тіла сталої маси ми можемо записати:
(1)
Нехай тіло прискорюється так, що швидкість зростає від до . Середня швидкість буде , зміна швидкості . Помноживши обидві частини рівності (1) на , отримаємо або , звідки .
За відсутності зовнішніх сил ми отримаємо закон збереження кінетичної енергії:
.
Закон збереження енергії має дуже складну, майже 330-річну історію. До неї потрібно звертатися декілька разів, вибираючи матеріал, що допомагає висвітленню питань, які розглядаються в даному розділі. Оскільки мова йде про механічні форми енергії, доцільно детально розглянути маятник Галілея (див рис.2.1.). Це дуже простий пристрій для демонстрації перетворення потенціальної енергії в кінетичну і знову в потенціальну. В дошку забито цвях А для підвішування вантажу В. По горизонталі в отвори С, Д,... вставляються металеві або дерев’яні штирі. Якщо вантаж відхилити і відпустити з висоти h, то де б не був вставлений штир, вантаж підніметься на ту ж висоту h.
ВИСНОВКИ
На закінчення прийнято коротко підводити підсумки і робити основні висновки, які витікають із сказаного вище. Мені б хотілося відійти від цієї традиції і просто наголосити на своїх основних замислах.
Хотілось би, щоб кожен вчитель відчув, як багато може дати історія фізики школярам, як вона може розвинути властиву юності допитливість розуму, як вона може допомогти вчителю пробудити в учня таке необхідне для пізнання світу хвилювання – хвилювання від спілкування з людьми науки, від колізій тих пошуків істини, які були загально поглинаючою жагою основоположників фізичної науки.
Хотілось би, щоб вчитель, забувши про тягар перевантаження, захотів розмовляти з учнями про те, як людина пізнавала природу, як думали, як шукали істину кращі представники фізичної науки, якими вони були. Звичайно, учня не запитають на екзамені про те, якою людиною був, наприклад, П.Н.Лебедєв. Але хто знає, що корисніше для учня: знати всі тонкощі постановки дослідів по вимірюванню тиску світла П.Н.Лебедєвим чи замислитись над тим, як жила, як думала, як робила ця людина?
Можливо, дізнавшись про особистості тих, ким пишається фізична наука, учень захоче краще зрозуміти ( і зуміє зрозуміти) суть науки? А можливо, дізнавшись про те, якими людьми були основоположники фізичної науки, учень зуміє зрозуміти саме життя і своє місце в ньому, зрозуміє, що є добро і зло, в чому істинні цінності життя? Адже не заради лише знань ми навчаємо учнів. Не менш, а можливо, і більш важливо сформулювати в кожній дитині кращі людські риси, які визначають образ гідної людини суспільства.
Хотілось би, щоб вчитель зрозумів, що історизм у викладанні фізики не самоціль, а засіб, який дозволяє краще пояснити школярам, що собою представляє світ природи і захоплюючий процес її поступового пізнання.
Хочеться побажати всім колегам-педагогам успіху в нелегкій праці залучення школярів до драми ідей, що розгортається на арені історичного процесу розвитку фізики. Залучення до історії науки збагачує інтелект і духовний світ наших учнів. А головну “методичну рекомендацію”, що забезпечує успіх в цій справі, можна сформулювати словами Л.Д.Ландау : “ Головне робіть все з захопленням; це дуже прикрашає життя.”
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1. Выдающиеся физики мира. / под ред. Кузнецова Б.Г. – М.: Типография библиотеки им. В.И.Ленина, 1958. – 435с.
2. Дж. Уокер. Физический фейерверк. – М.: Мир, 1989. – 298с.
3. Дуков В.М. Исторические обзоры в курсе физики средней школы. – М.: Просвещение, 1983. – 160с.
4. Иоффе А.Ф. О физике и физиках: статьи, выступления, письма. / (вступ. статья В.Я.Френкеля, с. 10 – 25). – Л.: Наука. Ленингр. отделение, 1985. – 544с.
5. Коршак Є.В. та ін. Фізика: 9 клас. – Ірпінь: Перун, 2000. – 232с.
6. Кудрявцев П.С. История физики и техники. – М.: Учпедгиз, 1960. – 507с.
7. Лауэ М. История физики. /пер. с нем. Г.Н.Горнштейн. Под ред. И.В.Кузнецова. - М.: Гостехиздат, 1956. – 230с.
8. Мощанский В.Н., Савелова Е.В. История физики в средней школе. – М.: Просвещение, 1981. – 205с.
9. Підвищення ефективності уроків з фізики. / за ред. Бугайова О.І. – К.: Радянська школа, 1986 – 152с.
10. Подкорытов Г.А. Историзм как метод научного познания. – Л.: ЛГУ, 1967. – 204с.
11. Спасский Б.И. История физики. – М.: Моск. Ун-т , 1956. – 359с.
12. Ярошевский М.Г., Зорина Л.Я. История науки и школьное обучение. – М.: Знание, 1978. – 190с.
13. Пизанская башня //Новая генерация.-2001. - №12(38). – с.5.
[1] Картина “Смерть Ріхмана” грішить по відношенню до історичної істини ( Ломоносов не був присутнім при смерті Ріхмана, проводячи подібні досліди окремо).
[2] Портрети вчених, які наводять в підручниках, дуже часто неякісні.
Дата: 2019-05-28, просмотров: 237.