СУЩНОСТЬ И ПРИНЦИПЫ СИСТЕМНОГО ПОДХОДА
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

СИСТЕМНЫЙ АНАЛИЗ

Системный анализ представляет совокупность научных методов и практических приемов решения разнообразных проблем на основе системного подхода.

В основе методологии системного анализа лежат три концепции: проблема, решение проблемы и система.

Проблема - это несоответствие или различие между существующим и требуемым положением дел в какой-либо системе.

В качестве требуемого положения может выступать необходимое или желаемое. Необходимое состояние диктуется объективными условиями, а желаемое определяется субъективными предпосылками, в основе которых лежат объективные условия функционирования системы.

Проблемы, существующие в одной системе, как правило, не равнозначны. Для сравнения проблем, определения их приоритета используются атрибуты: важность, масштаб, общность, актуальность и т.д.

Выявление проблемы осуществляется путем идентификации симптомов, определяющих несоответствие системы своему предназначению или недостаточную ее эффективность. Систематически проявляющиеся симптомы образуют тенденцию.

Идентификация симптомов производится путем измерения и анализа различных показателей системы, нормальное значение которых известны. Отклонение показателя от нормы и является симптомом.

Решение проблемы состоит в ликвидации различий между существующим и требуемым состоянием системы. Ликвидация различий может производиться либо путем совершенствования системы, либо путем ее замены на новую.

Решение о совершенствовании или замене принимается с учетом следующих положений. Если направление совершенствования обеспечивает существенное увеличение жизненного цикла системы и затраты несравнимо малы по отношению к стоимости разработки системы, то решение о совершенствовании оправдано. В противном случае следует рассматривать вопрос о ее замене новой.

Для решения проблемы создается система.

Основными компонентами системного анализа являются:

1. Цель системного анализа.

    2. Цель, которую должна достигнуть система в процессе: функционирования.

    3. Альтернативы или варианты построения или совершенствования системы, посредством которых возможно решение проблемы.

    4. Ресурсы, необходимые для анализа и совершенствования существующей системы или создания новой.

    5. Критерии или показатели, позволяющие сравнивать различные альтернативы и выбирать наиболее предпочтительные.

7. Модель, которая связывает воедино цель, альтернативы, ресурсы и критерии.

 

РЕЖИМЫ РАБОТЫ ВК

1 режим. ЭВМ2 решает параллельно те же задачи, что и ЭВМ1(основной режим, “горячий резерв”);

2 режим. ЭВМ1 обрабатывает поступающие сообщения, поступающие от ГКВВ (местного и периферийных);

           ЭВМ2 работает в интересах должностных лиц рабочих зон и обрабатывает информацию в общей базе данных;

3 режим. Часть рабочих зон подключена для работы по каналам СОД.

ЛИНГВИСТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Лингвистическое обеспечение представляет собой совокупность терминов военной разведки и других языковых средств, используемых в системе информобеспечения подсистемы, а также правил формализации естественного языка, включая методы сжатия и развертывания текстов, в целях повышения эффективности машинной обработки информации.

По назначению в подсистеме можно выделить 3 категории языков:

· входные;

· внутренние (машинные);

· выходные (в том числе описания документов).

 

Наиболее  важной составной частью языков является терминологический состав информации (словарный фонд). В подсистеме он всецело определяется терминологическим составом основных документов и отражает специфику … .

Входные языки являются едиными и обеспечивают удобство работы потребителей информации и операторов; они удовлетворяют все их информационные потребности ( инициирование решения задач, запросов на подготовку и передачу информации в КСА т.п.). Основной конструкцией входных языков является сообщение. В зависимости от того, какую смысловую нагрузку будет нести входной сообщение, оно может быть запросом на решение задачи, выдачу справки, поиск информации, донесением с исходной информацией для заполнения баз данных или их обновления, командой, подтверждением т.д.

Внутренние языки обеспечивают:

· накопление, хранение и обработку данных, включая устранение их избыточности и сжатие информации;

· связь хранящихся данных с прикладными программами путем использования языка описания данных.

Это достигается едиными соглашениями для организации информационного обмена в подсистеме.

Выходные языки предназначены для автоматического формирования документов, выдаваемых по определенной форме на экране АРМ ДЛ или АЦПУ ЭВМ, а также подготовки информации (исходных данных) для дальнейшей обработки (решения информационно-расчетных задач) или хранения в памяти ЭВМ.

 Выходные информационные языки обеспечивают выдачу на устройства печати и отображения документов в следующем виде:

· таблицы установленной формы;

· таблицы списковой структуры (каталоги);

· отредактированные тексты в соответствии с требованиями полиграфии.

 

Выбор решающего правила.

Выбор решающего правила определяется формой представления признаковой информации, наличием зависимостей между признаками, требованиями по оперативности распознавания объектов, а также полнотой и достоверностью признаков распознаваемого объекта и эталонного описания.

При разработке систем распознавания выбираются несколько приемлемых решающих правил и оценивают их эффективность путем моделирования работы системы распознавания.

В теории распознавания известно большое количество процедур распознавания:

- вероятностные;

- детерминированные (геометрические);

- логические;

- структурные.

  Метод Признаки и эталонное описание   Процедуры Форма представлеления результата
Вероятност-ный Закон распределения; таблицы распознавания Критерии Байесса, минимакса др. Вероятностность распознавания
Детерминиро-ванный(гео-метрический) Количественное, качественное; объектно-характерис-тические таблицы Евклидово расстояние и др. Мера близости
Логический «1» и «0»; булевы функции Операции булевой алгебры Значение результи-рующей булевой функции
Структурный Элементы описания и их конкатенации Правила грамма-тического разбора Результаты сопоставления

 

В случае параметрических решающих процедур имеется возможность их адаптации к особенностям эталонного описания, обеспечивая таки образом требуемую эффективность распознавания.

 

Самообучающиеся системы.

Цель самообучения – формирование обучающей выборки до и в процессе решения задачи распознавания.

Содержанием самообучения является группирование заданной совокупности реализаций в классы на основе заданных правил.

 

 


Для выбора оптимального варианта системы строится имитационная модель системы распознавания, основные компоненты которой показаны на рисунке.

 

 

 




ЭКСПЕРТНЫЕ СИСТЕМЫ

КОНЦЕПЦИЯ ЗНАНИЙ

При изучении интеллектуальных систем традиционно возникает вопрос, – что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ.

Можно предложить несколько рабочих определений, в рамках которых это становится очевидным.

Данные – это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства. Данные интерпретируются специальными программами. Они пассивны. Нет содержательной информации.

При обработке на ЭАМ данные трансформируются, условно проходя следующие этапы:

- данные как результат измерений и наблюдений;

- данные на материальных носителях информации (таблицы, протоколы, справочники);

- модели (структуры) данных в виде диаграмм, графиков, функций;

- данные в компьютере на языке описания данных;

- базы данных на машинных носителях.

Знания связаны с данными, основываются на них, но представляют собой результат мыслительной деятельности человека, обобщают его опыт, приобретенный в ходе выполнения какой-либо практической деятельности. Они получаются эмпирическим путем.

Знания – это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области. Они могут быть активны, т.е. определенные действия при выполнении соответствующих условий.

В отличие от данных знания обладают следующими свойствами:

· внутренней интерпретируемостью – вместе с информацией в БЗ представлены информационные структуры, позволяющие не только хранить знания, но и использовать их;

· структурированностью – выполняется декомпозиция сложных объектов на более простые и установление связей между ними;

· связанностью – отражаются закономерности относительно фактов, процессов, явлений и причинно-следственные отношения между ними;

· активностью –знания предполагают целенаправленное использование информации, способность управлять информационными процессами по решению определенных задач.

Все эти свойства знаний в конечном итоге должны обеспечить возможность СИИ моделировать рассуждения человека при решении прикладных задач – со знаниями тесно связано понятие процедуры получения решений задач (стратегии обработки знаний). В системах обработки знаний такую процедуру называют механизмом вывода, логическим выводом или машиной вывода. Принципы построения механизма вывода в СИИ определяются способом представления знаний и видом моделируемых рассуждений.

При обработке на ЭВМ знания трансформируются аналогично данным:

- знания в памяти человека как результат мышления;

- материальные носители знаний (учебники, методические пособия);_

- поле знаний - условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих;

- знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы и т.д.);

- базы знаний.

   Часто используются такие определения знаний:

Знания – это хорошо структурированные данные, и данные о данных, или метаданные.

Существует множество способов определять понятия. Один из широко применяемых способов основан на идее интенсионала.

Интенсионал понятия – это определение через понятие более высокого уровня абстракции с указанием специфических свойств. Этот способ определяет знания.

Другой способ определяет понятие через перечисление понятий более низкого уровня иерархии или фактов, относящихся к определяемому. Это есть определение через данные, или экстенсионал, понятия.

Пример: интенсионал: курсант- это учащийся военного училища.

Экстенсионал: курсант- это Иванов, Петров….

Для хранения данных используются базы данных (для них характерны большой объем и относительно небольшая удельная стоимость информации), для хранения знаний – базы знаний – основа любой интеллектуальной системы.

Знания могут быть классифицированы по следующим категориям:

- поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области;

- глубинные – абстракции, аналогии, схемы, отображающие структуру и процессы в предметной области.

Знания, на которые опирается человек, решая те или иную задачу, существенно разнородны.

Это прежде всего:

· понятийные знания (набор понятий и их взаимосвязи);

· конструктивные знания (знания о структуре и взамодествии частей различных объектов);

· процедурные знания (методы, алгоритмы и программы решения различных задач);

· фактографические знания (количественные и качественные характеристики объектов, явлений и их элементов).

 

Современные ЭС работают в основном с поверхностными знаниями, т. к. в настоящее время нет адекватных моделей, позволяющих работать с глубинными знаниями.

Кроме того, знания можно разделить на процедурные и декларативные. Исторически первичными были процедурные знания, т.е. знания, ”растворенные” в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием ИИ приоритет данных постепенно изменялся, и все большая часть знаний сосредотачивалась в структурах данных (таблицы, списки, абстрактные типы данных), т.е. увеличивалась роль декларативных знаний.

Сегодня знания приобрели чисто декларативную форму, т.е. знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.

Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них м.б. сведено к следующим классам:

- продукционные;

- семантические сети;

- фреймы;

- формальные логические модели.

ПОЛЕ ЗНАНИЙ

Одна из наиболее творческих процедур при построении ЭС – процедура концептуального анализа полученных знаний или структурирование.

Структурирование – это процесс создания полуформализованного описания предметной области. Такое полуформализованное описание называется полем знаний. Обычно оно создается в графической форме.

Поле знаний Рz можно описать следующим образом:

                Pz=<Sk,Sf>,

где Sk  - концептуальная структура предметной области;

Sf – функциональная структура предметной области.

Концептуальная структура, или модель предметной области, служит для описания ее объектов и отношений между ними, т.е. можно сказать, что концептуальная модель Sk представляет собой следующее:

                      Sk=<A,R>,

где А – множество объектов предметной области;

  R – множество отношений, связывающих объекты.

Множество отношений представляет собой связи между объектами. При помощи этих отношений инженер по знаниям фиксирует концептуальное устройство предметной области, иерархию понятий, свойство и структуру объектов. Разработка концептуальной структуры имеет самостоятельное значение, не зависимое от конечной цели – разработки экспертных систем. Эта структура может служить для целей обучения, повышения квалификации, для прогнозирования, объяснения, реструктурирования и т.п.

 

МОДЕЛИ ПРЕДСТАВЛЕНИЯ ЗНАНИЙ

1. Продукционная модель.

Продукционная модель, или модель, основанная на правилах, позволяет представлять знания в виде предложений типа:

Если (условие), то (действие).

Записываются эти правила обычно в виде:

ЕСЛИ А12,…,Аn ТО В.

Под условием понимается некоторое предложение – образ, по которому осуществляется поиск в базе знаний, а под действием – действия, выполняемые при успешном исходе поиска (они м.б. промежуточными, выступающими далее как условие, и терминальными или целевыми, завершающими работу системы).

«Условие» называют иногда «Посылкой», а «Действие» - «Выводом» или «Заключением».

Условия А12,…,Аn обычно называют фактами. С помощью фактов описывается текущее состояние предметной области. Факты могут быть истинными, ложными, либо, в общем случае, правдоподобными, когда истинность факта допускается с некоторой степенью уверенности.

Действие В трактуется как добавление нового факта в описание текущего состояния предметной области.

В упрощенном виде описание предметной области с помощью правил (продукций) базируется на следующих основных предположениях об устройстве предметной области. ПО может быть описана в виде множества фактов и множества правил.

Факты – это истинные высказывания (повествовательные предложения) об объектах или явлениях предметной области.

Правила описывают причинно-следственные связи между фактами (в общем случае и между правилами тоже) - как истинность одних фактов влияет на истинность других.

Продукционные модели могут отражать следующие виды отношений:

- ситуация ® действие,

- посылка ® заключение,

- причина ® следствие.

В продукционных системах используются два основных способа реализации механизма вывода:

1. Прямой вывод, или вывод от данных;

2. Обратный вывод, или вывод от цели.

В первом случае идут от известных данных (фактов) и на каждом шаге вывода к этим фактам применяют все возможные правила, которые порождают новые факты, и так до тех пор, пока не будет порожден факт-цель.

Для применения правила используется процесс сопоставления известных фактов с правилами и, если факты согласуются с посылками в правиле, то правило применяется.

Во втором случае вывод идет в обратном направлении – от поставленной цели. Если цель согласуется с заключением правила, то посылку правила принимают за подцель или гипотезу, и этот процесс повторяется до тех пор, пока не будет получено совпадение подцели с известными фактиами.

 

Пример: Набор правил:

П1: Если “отдых – летом” и ”человек – активный”, то “ехать в горы”.

П2: Если “любит солнце”, то “отдых - летом”.

Предположим, в систему поступили данные: “человек – активный” и “любит солнце”.

Прямой вывод:

1-й проход.

Шаг 1. Пробуем П1, не работает (не хватает данных “отдых – летом”).

Шаг 2. Пробуем П2, работает, в базу поступил факт “отдых летом”.

2-й проход.

Шаг 3. Пробуем П1, работает, активизирует цель “ехать в горы”, которая и выступает как совет, который дает ЭС.

Обратный вывод: - подтвердить выбранную цель при помощи имеющихся правил и данных.

1-й проход.

Шаг 1. Цель – “ехать в горы”. Пробуем П1 – данных “отдых – летом” нет, они становятся новой целью, и ищется правило, где она в правой части.

Шаг 2. Цель “отдых – летом”. Правило П2 подтверждает цель и активизирует ее.

2-й проход.

Шаг 3. Пробуем П1, искомая цель подтверждается.

Продукционная модель чаще всего применяется в промышленных ЭС.

достоинства: наглядность, высокая модульность, легкость внесения дополнений и изменений и простота логического вывода.

Разработано большое количество ЭС, используемых в самых различных областях, в том числе и в нашей прикладной области.

При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Вывод может быть прямым (от данных к поиску цели) или обратным (от цели для ее подтверждения – к данным). Данные – это исходные факты, на основании которых запускается машина вывода – программа, перебирающая правила в базе знаний.

2. Семантическая сеть.

Семантическая означает смысловая. Семантика – наука об отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков.

Семантическая сеть - это ориентированный граф, вершины которого – понятия, а дуги – отношения между ними.

“Понятия” это обычно абстрактные или конкретные объекты, а “отношения” – это связи типа: ‘это”, “быть частью”, “принадлежать”, “любит”.

Отношения бывают 3-х типов:

- Класс, к которому принадлежит данное понятие,

- Свойство, выделяющее понятие из всех прочих понятий этого класса,

- примеры данного понятия или элемента класса.

 

Наиболее часто используют следующие отношения:

- связи типа “часть – целое”,

- функциональные связи (соответствуют глаголам: “производит”, “влияет” и т.д.),

- количественные (>,<,= т.д.)

- пространственные (далеко от, близко от, за, под, над, …),

- временные (раньше, позже, в течение, …),

- атрибутивные (иметь свойство, иметь значение, …),

- логические (и, или, не) др.

Проблема поиска решения в базе знаний типа семантическая сеть сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, соответствующей поставленному вопросу.

Пример.

Двигатель
Цвет
Красный
      Значение              


                    Свойство                                                                 Имеет частью            

Вид транспорта
Автомобиль
Волга
                                             Это                                      Это               

  

   Принадлежит                 Любит

                                         

Иванов
 

 

2. Фреймовая модель.

Фрейм предложен М. Минским в 70-е годы как структура знаний для восприятия пространственных сцен. Это модель, как и семантическая сеть, имеет глубокое психологическое обоснование.

Под фреймом понимается абстрактный образ или ситуация. Напримекр слово “комната” вызывает у слушающих образ комнаты: “жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6 – 20 кв. метров.

       Из этого описания ничего нельзя убрать, но в нем есть “дырки”  или “слоты”, - это н00езаполненные значения некоторых атрибутов - количество окон, высота потолка, покрытие пола и другие.

       В теории фреймов такой образ называется фреймом. Фреймом называется также и формализованная модель для отображения образа.

       Структура фрейма:

       (Имя фрейма:

            имя 1-го слота (значение 1-го слота ),

            имя 2-го слота (значение 2-го слота ),

              . . .

            имя N-го слота (значение N-го слота)).

Или в виде таблицы.

 

                                                Имя фрейма

Имя слота    Тип слота Значение слота Присоединение
       

В таблице дополнительные столбцы предназнвчены для описания типа слоота и возможного присоединения к тому или иному слоту специальных процедур, что допускается в теории фреймов.

Например, слот “дата рождения” может содержать процедуру для вычисления возраста. Тогда естественно слот “возраст” оказывается ненужным. Данная процедура подключается автоматически и называется демоном.  Если процедура активизируется по запросу, она называется слугой.

С использованием присоединенных процедур можно запрограммировать любую процедуру вывода на фреймовой сети. Механизм управления выводом организуется следующим образом. Сначала запускается одна из присоединенных процедур некоторого фрейма, называемого образцом. Образец – это, по сути, фрейм-прототип, т.е. у него заполнены не все слоты, а только те, которые описывают связи данного фрейма с другими. Затем в силу необходимости, посредством пересылки сообщений, последовательно запускаются присоединенные процедуры других фреймов и таким образом осуществляется вывод.

В качестве значения слота может выступать имя другого фрейма; так образуют сети фреймов.

Слоты могут содержать фасеты, которые задают дипазон или перечень его возможных значений (например, слот “возраст” может содержать фасет “максимальный возраст”

Различают фреймы – образцы или прототипы, хранящиеся в базе знаний, и фреймы – экземпляры, которые создаются для отображения реальных ситуаций на основе поступающих данных.

Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через:

- фреймы – структуры,

- фреймы – сценарии,

- фреймы – ситуации.

Основным преимуществом фреймов как модели представления знаний является способность отражать концептуальную основу организации памяти человека, а также ее гибкость, наглядность и универсальность. Но она обладает высокой степенью формализации и сложностью (низкое быстродействие машины вывода).

 

4. Формальные логические модели.

Традиционно в представлении знаний выделяют формальные логические модели, основанные на классическом исчислении предикатов 1 порядка, когда предметная область или задача описывается в виде набора аксиом (правильных высказываний или объектов) и задаются правила построения новых объектов из других правильных объектов системы (правила вывода).

Пример.

1)высказывание: a>b представляется термом p(a,b) (двуместный предикат), где p – предикатный символ, заменяющий знак “>";

2)высказывание “аппаратная ах – исправна” представляется Q(x);

3)теорема Пифагора может быть представлена термом:

                     P![P2 (P3(x),P3 (y)),P3(z)]

В качестве предикатных символов могут использоваться следющие:

Ø - НЕВЕРНО ЧТО (ЗНАК ОТРИЦАНИЯ);

Ç - И (ЗНАК КОНЪЮНКЦИИ);

È - ИЛИ (ЗНАК ДИЗЪЮНКЦИИ);

® - ЕСЛИ … ТО (ЗНАК ИМЛИКАЦИИ);

Û - ТОГДА, КОГДА (ЗНАК ЭКВИВАЛЕНТНОСТИ);

" - ДЛЯ ВСЯКОГО ( ЗНАК КВАНТОРА ОБЩНОСТИ);

$ - СУЩЕСТВУЕТ (ЗНАК КВАНТОРА СУЩЕСТВОВАНИЯ).

В различных логических системах используются разнообразные правила вывода. Приведем два наиболее распространенные.

Правило подстановки. В формуле, которая уже выведена, можно вместо некоторого высказывания подставить любое другое присоблюдении условия: подстановка должна быть сделана во всех местах вхождения заменяемого высказывания в данную формулу.

Правило заключения. Если a и a®b являются истинными высказываниями посылками, тогда и высказывание заключение b также истина. Записывается правило в виде дроби

 

 

Особенность систем представления знаний заключается в том, сто они моделируют деятельность человека, осуществляемую часто в неформальном виде. Модели представления знаний имеют дело с информацией, получаемой от экспертов, которая часто носит качественный и противоречивый характер. Для обработки с помощью ЭВМ такая информация должна быть приведена к однозначному формализованному виду. Методологией формализованного представления знаний является логика.

 

2. СТРУКТУРА И РЕЖИМЫ РАБОТЫ ЭС

Знания, которыми обладает специалист в какой-либо облас­ти (дисциплине), можно разделить на формализованные (точные) и неформализованные (неточные). Формализованные знания фор­мулируются в книгах и руководствах в виде общих и строгих суждений (законов, формул, моделей, алгоритмов и т.п.), от­ражающих универсальные знания. Неформализованные знания, как правило, не попадают в книги и руководства в связи с их конкретностью, субъективностью, и приблизительностью. Знания этого рода являются результатом обобщения многолетнего опыты работы и интуиции специалистов. Они обычно представляют со­бой многообразие эмпирических (эвристических) приемов и пра­вил.

В зависимости от того, какие знания преобладают в той или иной области (дисциплине), ее относят к формализованным (если преобладают неточные знания) описательным областям. Задачи, решаемые на основе точных знаний, называют формали­зованными, а задачи, решаемые с помощью неточных знаний,- неформализованными. (Речь идет не о неформализуемых, а о не­формализованных задачах, т.е. о задачах, которые, возможно, и формализуемы, но эта формализация пока неизвестна.

Традиционное программирование в качестве основы для раз­работки программы использует алгоритм, т.е. формализованное знание. Поэтому до недавнего времени считалось, что ЭВМ не приспособлены для решения неформализованные задач. Расшире­ние сферы использования ЭВМ показало, что неформализованные задачи составляют очень важный класс задач, вероятно, значи­тельно больший, чем класс формализованных задач. Неумение решать неформализованные задачи сдерживает внедрение ЭВМ в описательные науки. Основной задачей информатики является внедрение ее методов в описательные науки и дисциплины. На основании этого можно утверждать, что исследования в области ЭС занимают значительное место в информатике.

Ньюэлл предложил относить к неформализованным задачам те, которые обладают одной или несколькими из следующих осо­бенностей:

алгоритмическое решение задачи неизвестно (хотя, возмож­но, и существует) или не может быть использовано из-за огра­ниченности ресурсов ЭВМ (времени, памяти);

задача не может быть определена в числовой форме (требу­ется символьное представление);

цели задачи не могут быть выражены в терминах точно оп­ределенной целевой функции.

Как правило, неформализованные задачи обладают неполно­той, ошибочностью, неоднозначностью и (или) противоречи­востью знаний (как данных, так и используемых правил преоб­разования).

Экспертные системы не отвергают и не заменяют традицион­ного подхода к программированию, они отличаются от традици­онных программ тем, что ориентированы на решение неформали­зованных задач и обладают следующими особенностями:

алгоритм решений не известен заранее, а строится самой ЭС с помощью символических рассуждений, базирующихся на эв­ристических приемах;

ясность полученных решений, т.е. система "осознает" в терминах пользователя, как она получила решение;

способность анализа и объяснения своих действий и знаний;

способность приобретения новых знаний от пользовате­ля-эксперта, не знающего программирования, и изменения в со­ответствии с ними своего поведения;

обеспечение "дружественного", как правило, естествен­но-языкового (ЕЯ) интерфейса с пользователем.

Обычно к ЭС относят системы, основанные на знаниях, т.е. системы, вычислительная возможность которых является в пер­вую очередь следствием их наращиваемой базы знаний (БЗ) и только во вторую очередь определяется используемыми метода­ми. Методы инженерии знаний (методы ЭС) в значительной сте­пени инвариантны тому, в каких областях они могут применять­ся. Области применения ЭС весьма разнообразны: военные при­ложения, медицина, электроника, вычислительная техника, гео­логия, математика, космос, сельское хозяйство, управление, финансы, юриспруденция и т.д. Более критичны методы инжене­рии знаний к типу решаемых задач. В настоящее время ЭС ис­пользуются при решении задач следующих типов: принятие реше­ний в условиях неопределенности (неполноты), интерпретация символов и сигналов, предсказание, диагностика, конструиро­вание, планирование, управление, контроль и др.

 


СУЩНОСТЬ И ПРИНЦИПЫ СИСТЕМНОГО ПОДХОДА

Системный подход представляет собой направление методологии научного познания и социальной практики, в основе которой лежит рассмотрение объектов как систем.

Сущность СП заключается, во-первых, в понимании объекта исследования как системы и, во-вторых, в понимании процесса исследования объекта как системного по своей логике и применяемым средствам.

Как любая методология, системный подход подразумевает наличие определенных принципов и способов организации деятельности, в данном случае деятельности, связанной с анализом и синтезом систем.

В основе системного подхода лежат принципы: цели, двойственности, целостности, сложности, множественности и историзма. Рассмотрим подробнее содержание перечисленных принципов.

1. Принцип цели ориентирует на то, что при исследовании объекта необходимо прежде всего выявить цель его функционирования.

Нас в первую очередь должно интересовать не как построена система, а для чего она существует, какая цель стоит перед ней, чем она вызвана, каковы средства достижения цели?

Принцип цели конструктивен при соблюдении двух условий:

- цель должна быть сформулирована таким образом, чтобы степень ее достижения можно было оценить (задать) количественно;

- в системе должен быть механизм, позволяющий оценить степень достижения заданной цели.

2. Принцип двойственности вытекает из принципа цели и означает, что система должна рассматриваться как часть системы более высокого уровня и в то же время как самостоятельная часть, выступающая как единое целое во взаимодействии со средой. В свою очередь каждый элемент системы обладает собственной структурой и также может рассматриваться как система.

Взаимосвязь с принципом цели состоит в том, что цель функционирования объекта должна быть подчинена решению задач функционирования системы более высокого уровня. Цель – категория внешняя по отношению к системе. Она ставится ей системой более высокого уровня, куда данная система входит как элемент.

3. Принцип целостности требует рассматривать объект как нечто выделенное из совокупности других объектов, выступающее целым по отношению к окружающей среде, имеющее свои специфические функции и развивающееся по свойственным ему законам. При этом не отрицается необходимость изучения отдельных сторон.

4. Принцип сложности указывает на необходимость исследования объекта, как сложного образования и, если сложность очень высока, нужно последовательно упрощать представление объекта, на так чтобы сохранить все его существенные свойства.

5. Принцип множественности требует от исследователя представлять описание объекта на множестве уровней: морфологическом, функциональном, информационном.

Морфологический уровень дает представление о строении системы. Морфологическое описание не может быть исчерпывающим. Глубина описания, уровень детализации, то есть выбор элементов, внутрь которых описание не проникает, определяется назначением системы. Морфологическое описание иерархично.

Конкретизация морфологии дается на стольких уровнях, сколько их требуется для создания представления об основных свойствах системы.

Функциональное описание связано с преобразованием энергии и информации. Всякий объект интересен прежде всего результатом своего существования, местом, которое он занимает среди других объектов в окружающем мире.

Информационное описание дает представление об организации системы, т.е. об информационных взаимосвязях между элементами системы. Он дополняет функциональное и морфологическое описания.

На каждом уровне описания действуют свои, специфические закономерности. Все уровни тесно взаимосвязаны. Внося изменения на одном из уровней, необходимо проводить анализ возможных изменений на других уровнях.

6. Принцип историзма обязывает исследователя вскрывать прошлое системы и выявлять тенденции и закономерности ее развития в будущем.

Прогнозирование поведения системы в будущем является необходимым условием того, что принятые решения по совершенствованию существующей системы или создание новой обеспечивает эффективное функционирование системы в течении заданного времени.

 

СИСТЕМНЫЙ АНАЛИЗ

Системный анализ представляет совокупность научных методов и практических приемов решения разнообразных проблем на основе системного подхода.

В основе методологии системного анализа лежат три концепции: проблема, решение проблемы и система.

Проблема - это несоответствие или различие между существующим и требуемым положением дел в какой-либо системе.

В качестве требуемого положения может выступать необходимое или желаемое. Необходимое состояние диктуется объективными условиями, а желаемое определяется субъективными предпосылками, в основе которых лежат объективные условия функционирования системы.

Проблемы, существующие в одной системе, как правило, не равнозначны. Для сравнения проблем, определения их приоритета используются атрибуты: важность, масштаб, общность, актуальность и т.д.

Выявление проблемы осуществляется путем идентификации симптомов, определяющих несоответствие системы своему предназначению или недостаточную ее эффективность. Систематически проявляющиеся симптомы образуют тенденцию.

Идентификация симптомов производится путем измерения и анализа различных показателей системы, нормальное значение которых известны. Отклонение показателя от нормы и является симптомом.

Решение проблемы состоит в ликвидации различий между существующим и требуемым состоянием системы. Ликвидация различий может производиться либо путем совершенствования системы, либо путем ее замены на новую.

Решение о совершенствовании или замене принимается с учетом следующих положений. Если направление совершенствования обеспечивает существенное увеличение жизненного цикла системы и затраты несравнимо малы по отношению к стоимости разработки системы, то решение о совершенствовании оправдано. В противном случае следует рассматривать вопрос о ее замене новой.

Для решения проблемы создается система.

Основными компонентами системного анализа являются:

1. Цель системного анализа.

    2. Цель, которую должна достигнуть система в процессе: функционирования.

    3. Альтернативы или варианты построения или совершенствования системы, посредством которых возможно решение проблемы.

    4. Ресурсы, необходимые для анализа и совершенствования существующей системы или создания новой.

    5. Критерии или показатели, позволяющие сравнивать различные альтернативы и выбирать наиболее предпочтительные.

7. Модель, которая связывает воедино цель, альтернативы, ресурсы и критерии.

 

Дата: 2019-05-28, просмотров: 180.