Структура и молекулярная масса РНК-геномов вирусов животных
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой
Семейство Структура Информационные функции Молекулярная масса
Пикорнавирусы Линейная однонитчатая «Плюс»-нитевая 2,7·106
Тогавирусы Линейная однонитчатая «Плюс»-нитевая 4·106
Парамиксовирусы Линейная однонитчатая «Минус»-нитевая 5·106-7,5·106
Рабдовирусы Линейная однонитчатая «Минус»-нитевая 3,8·106-4,5·106
Ортомиксовирусы Фрагментированная (8 уникальных фрагментов) «Минус»-нитевая От 0,2·106 до 1·106, всего 5·106
Буньявирусы Фрагментированная однонитчатая кольцевая (3 уникальных фрагмента L, M, S) «Минус»-нитевая L 3· 106-5·106 M 1·106-2·106 S 0,4·106-0,8·106
Аренавирусы Фрагментированная однонитчатая кольцевая и линейная формы; 2 вирус-специфических фрагмента L и S «Амбисенс»» L 2,1·106-3,2·106 S 1,1·106-1,6·106
Реовирусы Фрагментированная двунитчатая (10—12 уникаль­ных фрагментов) ДиплоРНК-вирусы 0,2·106-3·106
Ретровирусы Однонитчатая, 2 иден­тичные молекулы «Плюс»-нитевая, в составе внутриклеточной формы По 3·106, всего 6·106-7·106

БЕЛКИ

В зараженной клетке вирусный геном кодирует синтез двух групп белков: 1) структурных, которые входят в со­став вирусных частиц потомства, и 2) неструктурных, которые обслуживают процесс внутриклеточной репродукции вируса на разных его этапах, но в состав вирусных частиц не входят.

 

СТРУКТУРНЫЕ БЕЛКИ

 Количество структурных белков в составе вирусной частицы варьирует в широких пределах в зависимости от сложности организации вириона. Наибо­лее просто организованный вирус табачной мозаики со­держит всего один небольшой белок с молекулярной массой 17-18·103, некоторые фаги содержат 2-3 белка, просто организованные вирусы животных — 3-4 белка. Сложно устроенные вирусы, такие как вирусы оспы, содержат более 30 структурных белков.

Структурные белки делятся на 2 группы:

1) капсидные белки, образующие капсид, т. е. футляр для нуклеиновой кислоты вируса (от лат. capsa — вме­стилище), и входящие в состав капсида геномные белки и ферменты;

2) суперкапсидные белки, входящие в состав суперкапсида, т. е. наружной вирусной оболочки.

Поскольку суперкапсид называют также «пеплос» (от греч. peplos — покров, мантия), эти белки называют пепломерами.

Просто организованные вирусы, представляющие собой нуклеокапсид, содержат только капсидные белки. Сложно организованные вирусы содержат капсидные и суперкап­сидные белки.

Капсидные белки. Первоначальное представление о том, что капсидные белки являются всего лишь инерт­ной оболочкой для вирусной нуклеиновой кислоты, сложи­лось на основании изучения наиболее просто организо­ванного вируса табачной мозаики, частица которого со­стоит из одной молекулы РНК и одного типа белка, образующего чехол для РНК.

Однако такое представление неправильно. Хотя основной функцией капсидных белков является функция защиты вирусного генома от неблагоприятных воздействий внешней среды, у многих вирусов в составе капсида есть белки и с другими функциями. Поэтому термин «капсид» далеко выходит за пределы представления о нем как о футляре или чехле для вирус­ной нуклеиновой кислоты.

В составе капсида некоторых вирусов (пикорнавирусы, паповавирусы, аденовирусы) содержатся белки, ковалентно связанные с вирусным геномом (геномные белки). Эти белки являются терминальными, т. е. соединенными с концом вирусной нуклеиновой кислоты. Функции их неразрывно связаны с функциями генома и их регуля­цией»

У ряда сложно организованных вирусов в составе кап­сида имеются ферменты, осуществляющие транскрипцию и репликацию вирусного генома — РНК и ДНК (РНК и ДНК-полимеразы), а также ферменты, модифицирую­щие концы иРНК. Если ферменты и геномные белки представлены единичными молекулами, то капсидные бел­ки представлены множественными молекулами. Эти белки и формируют капсидную оболочку, в которую у сложно организованных вирусов вставлены молекулы белков с дру­гими функциями.

Основным принципом строения капсидной оболочки вирусов является принцип субъединичности, т. е. построе­ние капсидной оболочки из субъединиц — капсомеров, обра­зованных идентичными полипептидными цепями. Правильно построенные белковые субъединицы — капсомеры возникают благодаря способности вирусных капсидных белков к самосборке. Самосборка объясняется тем, что упорядоченная структура — капсид имеет наименьшую свободную энергию по сравнению с неупорядоченными белковыми молекулами. Сборка капсидной оболочки из субъединиц запрограммирована в первичной структуре белка и происходит самопроизвольно или при взаимодействии с нуклеиновой кислотой.

Принцип субъединичности в строении вирусного капси­да является универсальным свойством капсидных белков и имеет огромное значение для вирусов. Благодаря этому свойству достигается огромная экономия генетического материала. Если бы капсидная оболочка была построена из разных белков, то на кодирование ее потребовалась бы основная часть генетической информации, заложенной в вирусном геноме. В действительности на кодирование, например, одной полипептидной цепи вируса табачной мозаики, расходуется менее 10 % генома. Далее, в меха­низме самосборки заложена возможность контроля за полноценностью вирусных полипептидов: дефектные и чу­жеродные полипептидные цепи при таком способе сборки вирионов будут автоматически отбрасываться.

Описанная способность к самосборке в пробирке и в зараженной клетке характерна только для простых виру­сов. Сборка сложно организованных вирусов является го­раздо более сложным многоступенчатым процессом, хотя отдельные ее этапы, например формирование капсидов и нуклеокапсидов, также основаны на самосборке.

Суперкапсидные белки. Гликопротеиды. Суперкапсидные белки, или пепломеры, располагаются в липопротеидной оболочке (суперкапсиде или пеплосе) сложно устроенных вирусов. Они либо пронизывают насквозь липидный бислой как, например, гликопротеиды альфа-вирусов (вируса леса Семлики), либо не доходят до внутренней поверхности. Эти белки являются типичны­ми внутримембранными белками и имеют много общего с клеточными мембранными белками. Как и последние, суперкапсидные белки обычно гликозилированы. Углевод­ные цепочки прикреплены к молекуле полипептида в опре­деленных участках. Гликозилирование осуществляют кле­точные ферменты, поэтому один и тот же вирус, проду­цируемый разными видами клеток, может иметь разные углеводные остатки: может варьировать как состав угле­водов, так и длина углеводной цепочки и место прикреп­ления ее к полипептидному ocтoвy.

У большинства вирусов гликопротеиды формируют «шипы» на поверхности вирусной частицы, длина которых достигает 7-10 нм. Шипы представляют собой морфоло­гические субъединицы, построенные из нескольких моле­кул одного и того же белка. Вирусы гриппа имеют два типа шипов, построенных соответственно из гемаглютинина и нейраминидазы. Парамиксовирусы также имеют два типа шипов, построенных соответственно из двух гликопротеидов (HN и F), рабдовирусы имеют только один гликопротеид и, соответственно, один тип шипов, а альфа-вирусы имеют два или три гликопротеида, формирующих один тип шипов.

Гликопротеиды являются амфипатическими молекула­ми: они состоят из наружной, гидрофильной части, кото­рая содержит на конце аминогруппу (N-конец), и погру­женной в липидный бислой, гидрофобной части, которая содержит на погруженном конце гидроксильную группу

Основной функцией гликопротеидов является взаимо­действие со специфическими рецепторами клеточной поверхности. Благодаря этим белкам осуществляется рас­познавание специфических клеточных рецепторов и прикрепление к ним вирусной частицы, т.е. адсорбция вируса на клетке. Поэтому гликопротеиды, выполняющие эту функцию, называют вирусными прикрепительными белка­ми.

Другой функцией гликопротеидов является участие в слиянии вирусной и клеточной мембран, т.е. в событии, ведущем к проникновению вирусных частиц в клетку. Ви­русные белки слияния ответственны за такие процессы, как гемолиз и слияние плазматических мембран соседних кле­ток, приводящие к образованию гигантских клеток, синцитиев и симпластов.

«Адресная функция» вирусных белков. Вирусы вызывают инфекционный процесс у относительно небольшого круга хозяев. Вирус должен «узнать» чувст­вительную клетку, которая сможет обеспечить продукцию полноценного вирусного потомства. Если бы вирус прони­кал в любую клетку, которая встретилась на его пути, это привело бы к исчезновению вирусов в результате деструк­ции «родительской» вирусной частицы и отсутствия вирус­ного потомства. В процессе эволюции у вирусов выраба­тывалась так называемая адресная функция, т.е. поиск чувствительного хозяина среди бесконечного числа нечув­ствительных клеток. Эта функция реализуется путем на­личия специальных белков на поверхности вирусной частицы, которые узнают специфический рецептор на по­верхности чувствительной клетки.

Вирусные прикрепительные белки. Прикрепительные белки могут находиться в составе уникальных органелл, таких как структуры отростка у Т-бактериофагов или фибры у аденовирусов, которые хорошо видны в электронном микроскопе; могут формировать морфологически менее выраженные, но не менее уникальные аранжировки белковых субъединиц на поверхности вирусных мембран, как, например, шипы у оболочечных вирусов, «корону» у коронавирусов.

Просто организованные вирусы животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов эти белки входят в состав суперкапсида и представлены множественными молекулами.

 

НЕСТРУКТУРНЫЕ БЕЛКИ

Неструктурные белки изучены гораздо хуже, чем структурные, поскольку их выделяют не из очищенных препаратов вирусов, а из зараженных клеток, и возникают трудности в их идентификации и очи­стке от клеточных белков.

К неструктурным белкам относятся:

1) предшественники вирусных белков, которые отлича­ются от других неструктурных белков нестабильностью в зараженной клетке в результате быстрого нарезания на структурные белки;

2) ферменты синтеза РНК и ДНК (РНК и ДНК-полимеразы), обеспечивающие транскрипцию и реплика­цию вирусного генома;

3) белки-регуляторы;

4) ферменты, модифицирующие вирусные белки, на­пример протеиназы и протеинкиназы.

Однако многие неструктурные белки при ряде вирус­ных инфекций еще не идентифицированы и функции их не определены.

Типы структурных и неструктурных белков просто и сложно устроенных вирусов и их функции показаны на схеме 1.

 

ЛИПИДЫ

Липиды обнаружены у сложно организованных виру­сов и в основном находятся в составе липопротеидной оболочки (суперкапсида), формируя ее липидной бислой, в который вставлены суперкапсидные белки.   

Все сложно организованные РНК-содержащие вирусы имеют в своем составе значительное количество липидов (от 15 до 35 % от сухого веса). Из ДНК-содержащих вирусов липиды содержат вирусы оспы, герпеса и гепа­тита В (табл. 5). Примерно 50-60 % липидов в составе вирусов представлено фосфолипидами, 20-30 % состав­ляет холестерин.

Таблица 5.

Процентное содержание липидов и гликопротеидов в сос­таве вирусов животных (процент сухой массы на вирион)

Процентное содержание

Вирусы Липиды Гликопротеиды

ДНК-содержащие:

Парвовирусы

Паповавирусы

Аденовирусы

Вирусы герпеса

Вирус оспы

Вирус гепатита В

   
- -
- -
- ?
? ?
4 3
30 в HBs-антигене 3,6-6,5 в HBs-антигене

РНК-содержащие:

Пикорнавирусы

Ортомиксовирусы

Парамиксовирусы

Рабдовирусы

Альфа-вирусы

Флавивирусы

Ретровирусы

Коронавирусы

Буньявирусы

Аренавирусы

Реовирусы

   
- -
18-37 5-9
20-25 6
15-25 3
27-31 6,4
? ?
35 3,5
? ?
33 7
? ?
- ?

 

Липидный компонент стабилизирует структуру вирус­ной частицы. Экстракция липидов органическими раст­ворителями, обработка вирусной частицы детергентами или липазами приводит к деградации вирусной частицы и потере инфекционной активности.

Вирусы, содержащие липопротеидную мембрану, фор­мируются путем почкования на плазматической мембране клеток (или на мембранах эндоплазматической сети с выходом во внутриклеточные вакуоли). Поэтому липопротеидная оболочка этих вирусов представляет собой мембрану клетки-хозяина, модифицированную за счет наличия на ее наружной поверхности вирусных суперкапсидных белков. Из этого следует, что состав липидов почкующихся вирусов близок к составу липидов клетки хозяина. К почкующимся вирусам относятся крупные РНК-содержащие вирусы: ортомиксовирусы, парамиксовирусы, рабдовирусы, тогавирусы, ретровирусы, буньявирусы, аренавирусы, коронавирусы.

В связи с клеточным происхождением липидов общий состав липидной фракции и содержание ее отдельных компонентов у одного и того же вируса могут сущест­венно различаться в зависимости от клетки-хозяина, где происходила репродукция вируса. Наоборот, если разные почкующиеся вирусы репродуцировались в одних и тех же клетках, их липиды оказываются более или менее сходными.

У вирусов оспы и гепатита В липиды имеют иное происхождение, так как эти вирусы не почкуются через плазматическую мембрану. У вирусов оспы липиды не образуют дифференцированной оболочки. Обработка вируса осповакцины эфиром не приводит к потере инфек­ционной активности или каким-либо структурным измене­ниям вириона. Липиды вируса гепатита В и его HBs-антигена образуются путем инвагинации мембран эндо­плазматической сети. Вирус герпеса формируется путем почкования через ядерную оболочку, поэтому в его составе есть липиды ядерной оболочки.

 

УГЛЕВОДЫ

Углеводный компонент вирусов находится в составе гликопротеидов. Наличие гликопротеидов у вирусов и их процентное содержание показано в табл. 5. Количество сахаров в составе гликопротеидов может быть достаточно большим, достигая 10-13 % от массы вириона. Химичес­кая специфичность их полностью определяется клеточ­ными ферментами, обеспечивающими перенос и присоеди­нение соответствующих сахарных остатков. Обычными сахарными остатками, обнаруживаемыми в вирусных белках, являются фруктоза, сахароза, манноза, галактоза, нейраминовая кислота, глюкозамин. Таким образом, подобно липидам, углеводный компонент определяется клеткой-хозяином, благодаря чему один и тот же вирус, выращенный в клетках разных видов, может значительно различаться по составу Сахаров в зависимости от специфичности клеточных гликозилтрансфераз.

Углеводный компонент гликопротеидов играет существенную роль в структуре и функции белка. Он является каркасом для локальных участков гликопротеида, обеспечивая сохранение конформации белковой молекулы, и обусловливает защиту молекулы от протеаз. Возможны и другие функции углеводов, пока достоверно не уста­новленные.

 

КОМПОНЕНТЫ КЛЕТКИ-ХОЗЯИНА

В составе вирионов могут находиться компоненты клетки-хозяина. К таким компонентам могут относиться белки, и даже целые клеточные структуры. Так, например, в составе ряда оболочечных вирусов может находиться белок цитоскелета актин, в составе паповавирусов содер­жатся клеточные гистоны. Ряд вирусов содержит клеточ­ные ферменты, например протеинкиназы. В составе аренавирусов обнаружены рибосомы.

Клеточные компоненты могут включаться в вирион случайно или закономерно. В некоторых случаях они игра­ют существенную роль в репродукции вируса, как, напри­мер, гистоны в репродукции паповавирусов.

 





Дата: 2019-04-23, просмотров: 240.