И ГИДРОДИНАМИЧЕСКИЕ ПЕРЕДАЧИ
РАЗДЕЛ А. ЛОПАСТНЫЕ НАСОСЫ
Общие сведения о гидромашинах.
Насосы и гидродвигатели. Классификация насосов. Принцип действия динамических и объемных насосов. Основные параметры насосов: подача (расход), напор, мощность, КПД.
Методические указания
Насосом называется гидравлическая машина, преобразующая механическую энергию двигателя в энергию перекачиваемой жидкости. В гидравлическом двигателе происходит преобразование энергии потока жидкости в механическую энергию на выходном валу двигателя. Все типы насосов, несмотря на многообразие их конструктивных форм, по принципу действия, т.е. по способу передачи жидкости механической энергии, делятся на две группы: динамические (лопастные) и объемные (насосы вытеснения). К первым относятся центробежные, диагональные, осевые, вихревые насосы; ко вторым — поршневые и роторные насосы.
При изучении этого раздела студент должен усвоить общую классификацию насосов, их специфические особенности и область применения.
При рассмотрении основных параметров насосов следует обратить внимание на определение напора, его физический смысл и действительную размерность, надо также понять различие между полезной и затраченной мощностями, разобраться в физическом смысле коэффициента полезного действия.
Литература: [1, с. 172—177]; [2, с. 226—227]; [4, с. 204—214]; [6. с. 183—184]; [9, с. 138—141].
Вопросы для самопроверки
I. Расскажите о принципе действия динамических и объемных насосов. 2. Как определяется напор действующего насоса по показаниям приборов и по элементам насосной установки? 3. Как определяется полезная и затраченная мощность насоса? 4. Что представляет собой полный коэффициент полезного действия насоса?
Основы теории лопастных насосов и их свойства
Центробежные насосы. Схемы одноступенчатых центробежных насосов. Уравнение Эйлера. Теоретический напор насоса. Полезный напор. Потери энергии в насосе. Характеристика центробежных насосов.
Основы теории подобия насосов. Коэффициент быстроходности. Типы лопастных насосов. Применение формул подобия для пересчета характеристик насоса. Регулирование подачи. Последовательное и параллельное соединение насосов.
Кавитация в лопастных насосах. Кавитационная характеристика. Кавитационный запас. Формула Руднева и ее применение.
Методические указания
Работа лопастных насосов основана на силовом взаимодействии лопастей с обтекающим их потоком. При вращении рабочего колеса в потоке жидкости возникает разность давлений по обе стороны каждой лопатки (подъемная сила). Силы давления лопастей на поток создают вынужденное вращательное и поступательное движения жидкости, увеличивая ее давление и скоростной напор, т.е. механическую энергию.
Приращение энергии потока жидкости в лопастном колесе (напор насоса) зависит от сочетания скоростей протекания потока, частоты вращения колеса, его размеров, формы лопаток, т.е. от сочетания конструкции, размеров, частоты вращения и подачи насосов. Таким образом, главная особенность и отличие лопастных насосов от объемных состоят в том, что напор и подача у этих насосов взаимосвязаны, а подача непрерывна.
Созданная еще в середине XVIII в. Л. Эйлером приближенная струйная теория лопастных машин до настоящего времени является основой для их расчета. Сложность гидродинамических явлений, которые возникают при протекании жидкости в рабочих органах насоса, привела к теоретической модели идеального рабочего колеса с бесконечным числом бесконечно тонких лопастей. На основе струйной теории Л. Эйлером получено основное уравнение лопастных насосов, дающее зависимость теоретического напора от треугольников скоростей на выходе и входе рабочего колеса. С целью удовлетворительного согласования теории с данными опыта в формулу полезного (действительного) напора вводятся поправки на конечное число лопаток и на гидравлические потери. Следует обратить внимание на вывод основного уравнения, которое может быть получено из уравнения Бернулли для относительного движения или из теоремы моментов количества движения.
Различают теоретические и действительные характеристики лопастных насосов. Теоретические характеристики получаются в результате анализа основного уравнения лопастных насосов. Из-за сложности протекания жидкости через рабочие органы насоса точную взаимосвязь основных параметров работы насоса удается получить только экспериментально. В результате испытаний насосов получают их действительные характеристики — кривые зависимости напора, подачи, затраченной мощности, КПД и частоты вращения насоса. Характеристики дают достаточно полное представление об эксплуатационных качествах насосов и позволяют решать вопросы, связанные с их эксплуатацией и проектированием.
Студенту необходимо уяснить методику получения рабочих и универсальных характеристик, их использование для определения оптимальных режимов работы действующих насосов, для выбора новых насосов, определения режимов совместной работы на общую сеть, а также для определения условий работы при изменении частоты вращения и размеров насоса.
При создании новых образцов лопастных машин проводятся их лабораторные исследования и доводка на моделях. Для перехода от данных, полученных на моделях, к натурным насосам используется общая теория гидродинамического подобия потоков в применении к лопастным машинам. Следует уяснить условия применимости теории подобия к лопастным насосам, а также усвоить формулы пересчета основных параметров насосов при изменении размеров и частоты вращения.
При проектировании насосов одни и те же значения подачи и напора могут быть получены в насосах с различной частотой вращения. При этом конструктивный тип рабочего колеса и всей проточной части насоса будет также различен. Для характеристики конструктивного типа насосов служит коэффициент быстроходности (удельная частота вращения), который определяет область применения насосов. Студенту следует знать, по какой формуле вычисляется коэффициент быстроходности, на какие типы подразделяются лопастные насосы в зависимости от его значения. Коэффициент быстроходности зависит не только от частоты вращения, но и от напора и подачи насоса. Поэтому не всегда насосы с большей частотой вращения имеют больший коэффициент быстроходности.
Отрицательное влияние на работу центробежных насосов оказывает кавитация, возникающая в результате снижения давления при входе жидкости на рабочее колесо центробежного насоса ниже давления парообразования. Студент должен знать физическую сущность влияния кавитации и меры, необходимые для избежания этого вредного явления.
Необходимо знать и уметь пользоваться формулой для определения допустимой высоты всасывания центробежного насоса, определять навигационный запас по формуле Руднева.
Литература: [1, с. 177—254]; [2, с. 228—269]; [4, с. 226—257]; [6, с. 184—216]; [9, с. 141-186].
Вопросы для самопроверки
1. Начертите схему и объясните принцип действия одноступенчатого центробежного насоса. 2. Приведите параллелограммы скоростей на входе и выходе из рабочего колеса и поясните их. 3. Напишите основное уравнение центробежных насосов Эйлера, поясните его вывод и физический смысл. 4. В чем заключаются соотношения подобия (пропорциональности) для лопастных машин? Для каких целей они применяются? 5. Что называется рабочей и универсальной характеристиками центробежных насосов? 6. На какие виды делятся лопастные насосы по быстроходности? 7. Как найти подачу и напор (рабочую точку) при работе одного и двух центробежных насосов на сеть? Приведите соответствующие графики и характеристики. 8. Что такое осевое давление, как оно возникает и каковые меры его устранения (уравновешивания)? 9. Какова физическая сущность явления кавитации в лопастных машинах. 10. Как влияет кавитация на работу центробежных насосов и каковы меры борьбы с ней? 11. Укажите методы регулирования подачи центробежных насосов и расскажите об их физической сущности.
Вихревые и струйные насосы
Схема вихревого насоса, принцип действия, характеристика, области применения. Схема струйного насоса, принцип действия, области применения.
Методические указания
Рабочее колесо вихревого насоса имеет радиальные или наклонные лопатки и помещается в цилиндрическом корпусе с малыми торцевыми зазорами. Рабочий процесс вихревых насосов аналогичен центробежным, однако имеет некоторые особенности. Напор вихревых насосов в 3...7 раз больше напора центробежных при тех же размерах и частоте вращения. Насосы имеют малый коэффициент быстроходности (6...40 об/мин) и применяются для больших напоров и малых расходов. Они обладают способностью самовсасывания и могут перекачивать смеси жидкости и газа.
К струйным относятся насосы, рабочий процесс которых основан на эжектирующем действии струи рабочей жидкости (воды, газа, пара, воздуха). Насосы могут перекачивать воду, пульпу, нефть и другие жидкости, а также газы. Применяются для нагнетания (инжекторы), отсасывания (эжекторы) и вообще для перемещения жидкости (элеваторы). Ввиду сложности процессов расчет струйных насосов базируется главным образом на результатах экспериментов.
Нужно подробно рассмотреть рабочий процесс, характеристики, конструкции, способы регулирования и области применения вихревых и струйных насосов.
Литература: [I, с. 270—290]; [2, с. 269—271]; [4, с. 273—274]; [9, с. 220—224].
Вопросы для самопроверки
1. Начертите схемы вихревого и струйного насосов и расскажите о принципе их действия. 2. Какими достоинствами и недостатками обладают вихревые и струйные насосы? Какова область их применения? 3. От чего зависит подача струйных насосов и как определяется их коэффициент полезного действия?
Дата: 2019-03-05, просмотров: 238.