ГИГИЕНА ВОЗДУХА
Руководство к самостоятельной работе обучающихся по дисциплине «Гигиена»
Уфа
2017
УДК 613.95:371.711
Рецензенты:
Профессор, д.м.н. Боев В.М. - зав. кафедрой общей и коммунальной гигиены ГБОУ ВПО Оренбургская государственная медицинская академия Министерства здравоохранения Российской Федерации
Профессор, д.м.н. Березин И.И. - зав. кафедрой общей гигиены ГБОУ ВПО Самарский государственный медицинский университет Министерства здравоохранения Российской Федерации
Г45 Гигиена воздуха: Руководство к самостоятельной работе обучающихся по дисциплине «Гигиена» // сост.: Зулькарнаев Т.Р., Мурысева Е.Н., Поварго Е.А., Зигитбаев Р.Н., Зулькарнаева А.Т., Ахметзянова А.Х. - Уфа: Изд-во ФГБОУ ВО БГМУ Минздрава России, 2017. – 35 с.
ISBN 7-266-042524-3
Руководство к самостоятельной работе по разделу «Гигиена воздуха», составлено в соответствии с требованиями ФГОС ВО и ООП специальностей «Лечебное дело», «Педиатрия», «Стоматология», «Фармация», Медико-профилактическое дело».
В руководстве представлены три темы: «Гигиеническая оценка физических свойств воздуха», «Солнечная радиация и ее гигиеническое значение» и «Гигиеническая оценка химического состава воздуха».
Все темы составлены по единой схеме: обоснование актуальности и целей занятия, задания для самоподготовки - теоретические вопросы для подготовки к занятию, перечень рекомендуемой литературы, методики практических работ, примеры тестового контроля и ситуационных задач, эталоны ответов к ним,.
Данное руководство поможет студентам в овладении теоретическим материалом и практическими навыками при подготовке к практическим занятиям, при выполнении самостоятельных работ на практических занятиях и объектах, а также будет способствовать более успешной подготовке к экзаменам.
Рекомендовано в печать Координационным научно-методическим советом и утверждено решением Редакционно-издательского совета ФГБОУ ВО БГМУ Минздрава России.
© ФГБОУ ВО БГМУ Минздрава России, 2017
ОГЛАВЛЕНИЕ
Стр. | |
1. Введение | 4 |
2. Гигиеническая оценка физических свойств воздуха | 5 |
3. Солнечная радиация и ее гигиеническое значение. | 16 |
4. Гигиеническая оценка химического состава воздуха | 28 |
ВВЕДЕНИЕ
Существование воздушной среды является обязательным условием поддержания жизни на Земном шаре. Воздушная среда необходима для дыхания человека, животных и растений, она является также резервуаром, принимающим газообразные продукты их обмена веществ. Через воздушную среду совершаются процессы теплообмена организма с внешней средой.
Воздушная среда позволяет человеку ориентироваться в окружающей обстановке, воспринимать органами чувств различные сигналы, чтобы судить о состоянии окружающей среды.
Воздушная среда оказывает существенное влияние на многие энергетические, геологические и гидрологические процессы, происходящие на поверхности Земли. Она служит одним из главных факторов климатообразования, профилактическим и лечебным фактором (закаливание, климатотерапия).
Воздух является источником некоторых видов сырья, запасы которого практически неисчерпаемы; из него добывают азот, кислород, аргон и гелий.
С гигиенической точки зрения воздушная среда неоднородна. Различают атмосферный воздух, воздух жилых и общественных зданий, воздух промышленных предприятий. Настоящее пособие посвящено изучению атмосферного воздуха и воздуха различных помещений. Воздух промышленных предприятий рассматривается в теме «Гигиена труда».
При гигиенической оценке воздуха необходимо учитывать: физические свойства воздуха – барометрическое давление, температуру, влажность, скорость движения, солнечную радиацию, электрическое состояние, радиоактивность; химический состав – содержание естественных составных частей и химических примесей; механические примеси – содержание пыли и дыма; микроорганизмы – число бактерий, их патогенность.
В процессе развития человеческого организма между ним и воздушной средой создалось тесное взаимодействие, нарушение которого может неблагоприятно влиять на организм. Значительные изменения физических и химических свойств воздуха могут привести к нарушению здоровья и снижению качества жизни.
Перед гигиеной стоят следующие задачи: 1. изучение природных и антропогенных факторов воздушной среды, оказывающих влияние на здоровье человека; 2. изучение закономерностей влияния этих факторов на организм человека; 3. научное обоснование и разработка гигиенических нормативов, правил и мероприятий по устранению или ограничению до безопасных уровней неблагоприятно действующих факторов и по максимальному использованию факторов, положительно влияющих на организм человека. Реализация данных задач позволяет предупредить возникновение предпатологических и патологических состояний и, в конечном итоге, сохранить здоровье человека, что является основным направлением деятельности врача лечебного профиля.
СВОЙСТВ ВОЗДУХА
Актуальность темы. Воздух является одним из важнейших объектов окружающей человека среды. Без воздуха немыслимо сколько-нибудь продолжительное сохранение жизненных функций организма. Состояние атмосферы постоянно влияет на человека. В первую очередь он испытывает воздействие физических факторов: атмосферного давления, температуры, влажности, движения воздушных масс. Резкие изменения физических свойств воздуха могут оказать неблагоприятное влияние на здоровье человека, его работоспособность вследствие перенапряжения аппарата терморегуляции и нарушения теплового баланса.
Гигиеническая оценка физических факторов воздуха позволяет дать их характеристику, сделать вывод об их влиянии на здоровье человека и в соответствии с этим правильно организовать профилактические мероприятия по устранению или снижению их неблагоприятного воздействия.
Цель занятия: Усвоить значение физических свойств атмосферного воздуха и воздуха жилых и общественных помещений, их влияние на организм человека, а также профилактические мероприятия по устранению или снижению их неблагоприятного воздействия. Овладеть методами определения физических свойств воздуха и уметь дать полученным результатам гигиеническую оценку.
Для формирования профессиональных компетенций студент должен знать:
· гигиеническую характеристику физических свойств воздуха;
· профилактические мероприятия по устранению или снижению возможного неблагоприятного действия метеорологических факторов на здоровье человека и по оптимизации микроклиматических условий в помещениях;
· методы исследования физических свойств воздуха;
· принцип и устройство приборов для определения физических свойств воздуха;
· нормативную документацию для оценки микроклимата помещений.
Для формирования профессиональных компетенций студент должен уметь:
· определять и оценивать температуру, влажность и скорость движения атмосферного воздуха и воздуха помещений различного назначения;
· определять и оценивать кратность воздухообмена в жилых и учебных помещениях;
· давать рекомендации по устранению или снижению возможного неблагоприятного действия метеорологических факторов на здоровье человека и по оптимизации микроклиматических условий в помещениях;
· работать с нормативной документацией.
Для формирования профессиональных компетенций студент должен владеть:
· методами исследования температуры, влажности и скорости движения атмосферного воздуха и воздуха помещений различного назначения;
· методикой расчёта кратности воздухообмена в помещениях;
· приборами для определения физических свойств воздуха;
· гигиенической оценкой полученных результатов;
· основными профилактическими мероприятиями по устранению или снижению возможного неблагоприятного действия метеорологических факторов на здоровье человека и по улучшению микроклимата помещений;
· навыками применения нормативной документации.
Необходимые базисные знания и умения
· Экология и биосфера.
· Основные понятия термодинамики.
Задания для самостоятельной внеаудиторной работы студентов по указанной теме:
· Ознакомиться с теоретическим материалом по теме занятия с использованием конспектов лекций, рекомендуемой учебной литературы.
· Ответить на вопросы для самоконтроля.
· Проверить свои знания с использованием тестового контроля
· Решить ситуационные задачи.
Материалы для самоподготовки к освоению данной темы:
Вопросы для самоконтроля:
1) Атмосферный воздух, значение.
2) Гигиеническая характеристика атмосферного воздуха.
3) Гигиеническое значение атмосферного давления.
4) Метеотропные и сезонные заболевания, их профилактика.
5) Заболевания, связанные с воздействием повышенного и пониженного атмосферного давления, их профилактика.
6) Влияние на организм человека высоких и низких температур. Меры профилактики перегреваний и переохлаждений. Оптимальные температуры для различных помещений.
7) Гигиеническое значение влажности воздуха. Виды влажности. Нормы для помещений.
8) Гигиеническое значение движения воздуха. Нормы для помещений.
9) Роза ветров, значение, построение.
10) Комплексное воздействие температуры, влажности и движения воздуха на организм человека. Пути теплоотдачи при различных значениях указанных факторов.
11) Устройство и принцип работы приборов для измерения барометрического давления.
12) Устройство и принцип работы приборов для измерения температуры воздуха.
13) Определение температурного режима помещений.
14) Устройство и принцип работы приборов для измерения влажности воздуха.
15) Устройство и принцип работы приборов для измерения скорости движения воздуха.
16) Кататермометрия. Определение охлаждающих свойств и малых скоростей движения воздуха.
17) Кратность воздухообмена, значение, определение.
Самостоятельная работа студентов
Определение атмосферного давления, температуры, влажности,
скорости движения воздуха
Приборы для определения атмосферного давления
· Барометр ртутный сифонный представляет собой У-образную трубку, наполненную ртутью, с открытым концом в меньшем колене и с запаянным концом в длинном колене. В этом барометре давление измеряется в миллиметрах по разности между высотой ртутного столба в длинном колене и высотой столба в открытом колене.
· Барометр ртутный чашечный состоит из вертикальной, наполненной ртутью трубки, верхний конец которой запаян, а нижний опущен в чашечку с ртутью. При увеличении атмосферного давления воздух давит на поверхность ртути в чашечке. Часть ртути входит в трубку и уровень ее повышается. Измерения производятся в миллиметрах ртутного столба.
· Барометр-анероид состоит из безвоздушной металлической коробки с упругими волнообразными стенками. Колебания атмосферного давления отражаются на объеме и форме коробки, стенки которой прогибаются или выпрямляются. Эти движения посредством пружины и системы рычажков передаются стрелке, движущейся по циферблату.
· Барограф - самопишущий прибор, применяемый для систематических наблюдений за ходом барометрического давления в течение определенного промежутка времени. Главную часть его составляет ряд анероидных коробок. При изменении давления крышки этих коробок перемещаются, что передается по системе рычажков стрелке с пером, укрепленной около вращающегося барабана. На последний надета разграфленная на миллиметры ртутного столба бумажная лента. При увеличении давления перо стрелки поднимается кверху, при снижении давления - опускается книзу.
Приборы для определения температуры воздуха
Измерение температуры воздуха проводят с помощью ртутных и спиртовых термометров. Наибольшее распространение получили ртутные термометры. Это объясняется их большой точностью и возможностью применения в широких пределах от -35° до +35°С. Спиртовые термометры менее точны, так как спирт при нагревании выше 0°С расширяется неравномерно, но зато они дают возможность измерить очень низкие температуры. Термометры градуируются в градусах Цельсия.
· Максимальный термометр (ртутный). Представителем его является медицинский термометр. В приборе при переходе резервуара для ртути в капилляр имеется сужение, и ртуть преодолевает его только при повышении температуры под влиянием силы расширения. При понижении температуры ртуть вниз не падает. Для повторного измерения необходимо вогнать ртуть обратно в резервуар энергичным встряхиванием.
· Минимальный термометр (спиртовой) имеет в капилляре стеклянную иглу-указатель с утолщениями на конце. Температура измеряется в горизонтальном положении (предварительно игла-указатель опускается до мениска спирта - пленки поверхностного натяжения). При понижении температуры поверхностная пленка увлекает за собой стрелку вниз к резервуару и устанавливает ее в положении, соответствующем минимуму наблюдавшейся температуры. При повышении температуры спирт, расширяясь, проходит мимо стрелки, не сдвигая ее с места, так как сила трения утолщений стрелки достаточна, чтобы удержать ее на месте.
· Термограф - самопишущий прибор, применяемый для систематических наблюдений за ходом температуры. Воспринимающей частью прибора является биметаллическая пластинка, состоящая из двух спаянных между собой пластинок металла с разными температурными коэффициентами. При колебании температуры изменяется изгиб пластинки, что передается через систему рычажков стрелке с пером, скользящим по особо разграфленной бумаге, надетой на вращающийся барабан.
Исследование температурного режима воздуха помещений
Измерение проводят в пяти точках: по вертикали - в трех точках: 0,1 – 1 – 1,5 м от пола (колебания температуры не должны превышать 2,5° между крайними точками измерения); по горизонтали - в двух точках: 10-15 см от наружной и внутренней стен помещения на высоте 1,5 м (колебания температуры не должны превышать 2°). Средняя температура воздуха в учебных комнатах, жилых помещениях, больничных палатах должны находиться в пределах 18-24°С, в спортивных залах - 17-20°С, в ротных спальнях казарм, школьных мастерских - 16- 18°С, в операционных - 22°С.
Приборы для определения влажности воздуха
· Психрометр Августа состоит из двух спиртовых термометров. Резервуар одного из них обернут тонкой материей, конец которой опущен в дистиллированную воду. Через 10-15 минут наблюдения снимают показания с сухого и влажного термометров. По разнице показаний по таблице определяют относительную влажность воздуха. Разница будет тем больше, чем суше воздух.
· Психрометр Ассмана является более усовершенствованным прибором. Ртутные термометры заключены в металлические трубки, через которые равномерно просасывается исследуемый воздух с помощью заводного вентилятора, находящегося в верхней части прибора. Резервуар влажного термометра обернут кусочком батиста, который перед каждым наблюдением смачивают дистиллированной водой. Через 5 минут от начала работы снимают показания термометров и по таблице определяют относительную влажность воздуха.
· Гигрометр. Принцип работы основан на способности волоса в силу гигроскопичности удлиняться во влажной среде и укорачиваться в сухой. Вымытый и обезжиренный волос укреплен в раме, нижний конец его через блок соединен со стрелкой, скользящей по шкале, на которую нанесены цифры, показывающие относительную влажность. Гигрометры являются менее точными приборами, чем психрометры.
· Гигрограф - самопишущий прибор, применяемый для систематической записи относительной влажности воздуха. Гигроскопическим телом является пучок волос, закрепленный на раме с обеих сторон. В середине пучок оттянут при помощи крючка. При увеличении или уменьшении длины волос в зависимости от изменения относительной влажности происходит перемещение срединной точки пучка. Это передается через систему рычажков на стрелку с пером, вычерчивающим на ленте вращающегося барабана кривую влажности воздуха.
Относительная влажность воздуха в различных помещениях нормируется в пределах 30-70%.
Приборы для определения скорости движения воздуха
· Чашечный анемометр позволяет измерять скорость движения воздуха от 1 до 50 м/сек. Верхняя часть его состоит из крестовины с четырьмя полыми полушариями, обращенными выпуклостью в одну сторону. Нижний конец оси с крестовиной соединен с измерительным устройством (счетчиком оборотов). При наблюдениях становятся лицом к ветру и устанавливают прибор так, чтобы измерительное устройство было обращено к наблюдателю. Записывают показания прибора, т.е. положение стрелок на циферблате, указывающих количество метров, начиная с тысяч (первая малая стрелка), затем сотен (вторая малая стрелка) и единиц (большая стрелка). Дают чашечкам вращаться 1-2 минуты вхолостую, чтобы они приняли постоянную скорость вращения, а затем одновременно включают счетчик анемометра и секундомер. Через 5-10 минут счетчик выключают и записывают новые показания стрелок. Разница в показаниях стрелок между вторым и первым отсчетами покажет число метров, пройденных воздушным потоком за период наблюдения. Для нахождения скорости движения воздуха необходимо разделить найденное число на количество секунд, в течение которых работал анемометр.
Пример:
До наблюдения: После наблюдения:
1 малая стрелка (1000) - 4 между 4 и 5
2 малая стрелка (100) - 2 между 6 и 7
Большая стрелка - 0 80
Запись - 4200 4680
Разница = 4680 - 4200 = 480 м
Скорость движения воздуха = 480 м : 300 сек = 1,6 м/сек.
· Крыльчатый анемометр отличается большей чувствительностью и пригоден для измерения более слабых потоков воздуха в пределах от 0,5 до 15 м/сек. Воспринимающей частью прибора является колесико с легкими алюминиевыми крыльями, огражденными широким металлическим кольцом. Принцип работы прибора аналогичен предыдущему.
· Кататермометр - прибор, предназначенный для определения малых скоростей движения воздуха (до 1-2 м/сек). Кататермометр представляет собой спиртовой термометр с цилиндрическим или шаровым резервуаром со шкалой, разделенной на градусы соответственно от 35°до 38°С и от 33° до 40°С. В начале определяется охлаждающая способность воздуха (один из методов учета суммарного действия на организм температуры, влажности и скорости движения воздуха). Кататермометр опускают в горячую воду (около 80°С) и нагревают до тех пор, пока спирт не поднимется до половины верхнего расширения капилляра. После этого прибор вытирают и вешают в месте наблюдения. Затем отмечают по секундомеру время, в течение которого столбик спирта опустится с 38° до 35°С. Величину охлаждения находят по формуле: Н= F / а, где Н – искомая величина охлаждения; F - фактор прибора (постоянная величина, показывающая количество тепла, теряемого с 1 см2 поверхности резервуара кататермометра за время его охлаждения с 38° до 35°С, в мкал/см2); а - время охлаждения прибора в секундах.
Установлено, что оптимальное тепловое самочувствие у лиц так называемых сидячих профессий совпадает с величиной охлаждения кататермометра в пределах 5,5 -7,0 мкал/см2 х сек.
Для нахождения скорости движения воздуха предварительно определяют выражение Н/Q (Q – разность между средней температурой тела 36,5° и температурой окружающего воздуха). Затем по таблице находят соответствующую этой величине скорость движения воздуха.
Скорость движения воздуха в учебных комнатах, жилых помещениях нормируется в пределах 0,2 - 0,4 м/сек, в операционных - 0,15 м/сек.
В настоящее время для измерения физических свойств воздуха предлагаются разнообразные приборы. Измеренные ими показатели выводятся в цифровом виде на дисплей. Многие приборы имеют встроенную память, выход на компьютер. Приводим примеры некоторых из них:
Рисунок. Углы освещения: АВС – угол падения; ABD – угол отверстия.
Эти отрезки наносят на бумагу в уменьшенном масштабе и крайние их точки соединяют диагональю. Угол АВС и будет углом падения, который можно определить при помощи транспортира. Угол АВС можно также определить, используя таблицы натуральных значений тригонометрических функций (тангенсов), зная, что tg Ð АВС= АС/ ВС.
Угол падения рабочей поверхности должен быть не менее 27о.
Угол отверстия даёт представление о величине небосвода, непосредственно освещающего исследуемое место (чем больше видимый из окна участок неба, тем естественное освещение лучше). Угол отверстия АВД образуется двумя линиями, из которых одна (верхняя) идёт от места определения освещённости к верхнему краю окна, а другая (нижняя) направляется к высшей точке противолежащего здания. Величину угла отверстия определяют следующим образом: проводят мысленно прямую линию от поверхности рабочего стола к высшей точке противостоящего дома. Другое лицо, стоя у окна, отмечает на раме точку этой воображаемой линии, через которую она проходит (точка Д). Угол отверстия также определяют с помощью транспортира или таблицы тангенсов: ÐАВД=ÐАВС – ÐДВС; tg ÐДВС=
ДС/ ВС.
Угол отверстия должен быть не менее 5о.
К светотехническим показателям относится коэффициент естественной освещённости.
Коэффициент естественной освещённости (КЕО) - это отношение освещённости в данной точке помещения к одновременной наружной освещённости в условиях рассеянного света, выраженное в процентах. Определяется КЕО экспериментально с помощью люксметра и расчет производится по формуле:
где Е1- горизонтальная освещенность внутри помещения;
Е2 – освещенность горизонтальной плоскости вне здания.
В учебных комнатах. в операционных КЕО должен быть не менее 1,5%, в жилых комнатах, больничных палатах – не менее 0,5%.
ГИГИЕНА ВОЗДУХА
Руководство к самостоятельной работе обучающихся
по дисциплине «Гигиена»
Лицензия № 0177 от 10.06.96
Сдано в набор 02.10.16. Подписано к печати 03.09.16
Отпечатано на ризографе.
Формат 60 х 84 1/16. Усл. печ. л. 3,2. Уч. изд. л. 1,8
Тираж 100 экз. Заказ № 13.
__________________________________________________________________
450000 г. Уфа, ул. Ленина, 3
ФГБОУ ВО БГМУ Минздрава России
ГИГИЕНА ВОЗДУХА
Руководство к самостоятельной работе обучающихся по дисциплине «Гигиена»
Уфа
2017
УДК 613.95:371.711
Рецензенты:
Профессор, д.м.н. Боев В.М. - зав. кафедрой общей и коммунальной гигиены ГБОУ ВПО Оренбургская государственная медицинская академия Министерства здравоохранения Российской Федерации
Профессор, д.м.н. Березин И.И. - зав. кафедрой общей гигиены ГБОУ ВПО Самарский государственный медицинский университет Министерства здравоохранения Российской Федерации
Г45 Гигиена воздуха: Руководство к самостоятельной работе обучающихся по дисциплине «Гигиена» // сост.: Зулькарнаев Т.Р., Мурысева Е.Н., Поварго Е.А., Зигитбаев Р.Н., Зулькарнаева А.Т., Ахметзянова А.Х. - Уфа: Изд-во ФГБОУ ВО БГМУ Минздрава России, 2017. – 35 с.
ISBN 7-266-042524-3
Руководство к самостоятельной работе по разделу «Гигиена воздуха», составлено в соответствии с требованиями ФГОС ВО и ООП специальностей «Лечебное дело», «Педиатрия», «Стоматология», «Фармация», Медико-профилактическое дело».
В руководстве представлены три темы: «Гигиеническая оценка физических свойств воздуха», «Солнечная радиация и ее гигиеническое значение» и «Гигиеническая оценка химического состава воздуха».
Все темы составлены по единой схеме: обоснование актуальности и целей занятия, задания для самоподготовки - теоретические вопросы для подготовки к занятию, перечень рекомендуемой литературы, методики практических работ, примеры тестового контроля и ситуационных задач, эталоны ответов к ним,.
Данное руководство поможет студентам в овладении теоретическим материалом и практическими навыками при подготовке к практическим занятиям, при выполнении самостоятельных работ на практических занятиях и объектах, а также будет способствовать более успешной подготовке к экзаменам.
Рекомендовано в печать Координационным научно-методическим советом и утверждено решением Редакционно-издательского совета ФГБОУ ВО БГМУ Минздрава России.
© ФГБОУ ВО БГМУ Минздрава России, 2017
ОГЛАВЛЕНИЕ
Стр. | |
1. Введение | 4 |
2. Гигиеническая оценка физических свойств воздуха | 5 |
3. Солнечная радиация и ее гигиеническое значение. | 16 |
4. Гигиеническая оценка химического состава воздуха | 28 |
ВВЕДЕНИЕ
Существование воздушной среды является обязательным условием поддержания жизни на Земном шаре. Воздушная среда необходима для дыхания человека, животных и растений, она является также резервуаром, принимающим газообразные продукты их обмена веществ. Через воздушную среду совершаются процессы теплообмена организма с внешней средой.
Воздушная среда позволяет человеку ориентироваться в окружающей обстановке, воспринимать органами чувств различные сигналы, чтобы судить о состоянии окружающей среды.
Воздушная среда оказывает существенное влияние на многие энергетические, геологические и гидрологические процессы, происходящие на поверхности Земли. Она служит одним из главных факторов климатообразования, профилактическим и лечебным фактором (закаливание, климатотерапия).
Воздух является источником некоторых видов сырья, запасы которого практически неисчерпаемы; из него добывают азот, кислород, аргон и гелий.
С гигиенической точки зрения воздушная среда неоднородна. Различают атмосферный воздух, воздух жилых и общественных зданий, воздух промышленных предприятий. Настоящее пособие посвящено изучению атмосферного воздуха и воздуха различных помещений. Воздух промышленных предприятий рассматривается в теме «Гигиена труда».
При гигиенической оценке воздуха необходимо учитывать: физические свойства воздуха – барометрическое давление, температуру, влажность, скорость движения, солнечную радиацию, электрическое состояние, радиоактивность; химический состав – содержание естественных составных частей и химических примесей; механические примеси – содержание пыли и дыма; микроорганизмы – число бактерий, их патогенность.
В процессе развития человеческого организма между ним и воздушной средой создалось тесное взаимодействие, нарушение которого может неблагоприятно влиять на организм. Значительные изменения физических и химических свойств воздуха могут привести к нарушению здоровья и снижению качества жизни.
Перед гигиеной стоят следующие задачи: 1. изучение природных и антропогенных факторов воздушной среды, оказывающих влияние на здоровье человека; 2. изучение закономерностей влияния этих факторов на организм человека; 3. научное обоснование и разработка гигиенических нормативов, правил и мероприятий по устранению или ограничению до безопасных уровней неблагоприятно действующих факторов и по максимальному использованию факторов, положительно влияющих на организм человека. Реализация данных задач позволяет предупредить возникновение предпатологических и патологических состояний и, в конечном итоге, сохранить здоровье человека, что является основным направлением деятельности врача лечебного профиля.
ГИГИЕНИЧЕСКАЯ ОЦЕНКА ФИЗИЧЕСКИХ
СВОЙСТВ ВОЗДУХА
Актуальность темы. Воздух является одним из важнейших объектов окружающей человека среды. Без воздуха немыслимо сколько-нибудь продолжительное сохранение жизненных функций организма. Состояние атмосферы постоянно влияет на человека. В первую очередь он испытывает воздействие физических факторов: атмосферного давления, температуры, влажности, движения воздушных масс. Резкие изменения физических свойств воздуха могут оказать неблагоприятное влияние на здоровье человека, его работоспособность вследствие перенапряжения аппарата терморегуляции и нарушения теплового баланса.
Гигиеническая оценка физических факторов воздуха позволяет дать их характеристику, сделать вывод об их влиянии на здоровье человека и в соответствии с этим правильно организовать профилактические мероприятия по устранению или снижению их неблагоприятного воздействия.
Цель занятия: Усвоить значение физических свойств атмосферного воздуха и воздуха жилых и общественных помещений, их влияние на организм человека, а также профилактические мероприятия по устранению или снижению их неблагоприятного воздействия. Овладеть методами определения физических свойств воздуха и уметь дать полученным результатам гигиеническую оценку.
Для формирования профессиональных компетенций студент должен знать:
· гигиеническую характеристику физических свойств воздуха;
· профилактические мероприятия по устранению или снижению возможного неблагоприятного действия метеорологических факторов на здоровье человека и по оптимизации микроклиматических условий в помещениях;
· методы исследования физических свойств воздуха;
· принцип и устройство приборов для определения физических свойств воздуха;
· нормативную документацию для оценки микроклимата помещений.
Для формирования профессиональных компетенций студент должен уметь:
· определять и оценивать температуру, влажность и скорость движения атмосферного воздуха и воздуха помещений различного назначения;
· определять и оценивать кратность воздухообмена в жилых и учебных помещениях;
· давать рекомендации по устранению или снижению возможного неблагоприятного действия метеорологических факторов на здоровье человека и по оптимизации микроклиматических условий в помещениях;
· работать с нормативной документацией.
Для формирования профессиональных компетенций студент должен владеть:
· методами исследования температуры, влажности и скорости движения атмосферного воздуха и воздуха помещений различного назначения;
· методикой расчёта кратности воздухообмена в помещениях;
· приборами для определения физических свойств воздуха;
· гигиенической оценкой полученных результатов;
· основными профилактическими мероприятиями по устранению или снижению возможного неблагоприятного действия метеорологических факторов на здоровье человека и по улучшению микроклимата помещений;
· навыками применения нормативной документации.
Необходимые базисные знания и умения
· Экология и биосфера.
· Основные понятия термодинамики.
Задания для самостоятельной внеаудиторной работы студентов по указанной теме:
· Ознакомиться с теоретическим материалом по теме занятия с использованием конспектов лекций, рекомендуемой учебной литературы.
· Ответить на вопросы для самоконтроля.
· Проверить свои знания с использованием тестового контроля
· Решить ситуационные задачи.
Материалы для самоподготовки к освоению данной темы:
Вопросы для самоконтроля:
1) Атмосферный воздух, значение.
2) Гигиеническая характеристика атмосферного воздуха.
3) Гигиеническое значение атмосферного давления.
4) Метеотропные и сезонные заболевания, их профилактика.
5) Заболевания, связанные с воздействием повышенного и пониженного атмосферного давления, их профилактика.
6) Влияние на организм человека высоких и низких температур. Меры профилактики перегреваний и переохлаждений. Оптимальные температуры для различных помещений.
7) Гигиеническое значение влажности воздуха. Виды влажности. Нормы для помещений.
8) Гигиеническое значение движения воздуха. Нормы для помещений.
9) Роза ветров, значение, построение.
10) Комплексное воздействие температуры, влажности и движения воздуха на организм человека. Пути теплоотдачи при различных значениях указанных факторов.
11) Устройство и принцип работы приборов для измерения барометрического давления.
12) Устройство и принцип работы приборов для измерения температуры воздуха.
13) Определение температурного режима помещений.
14) Устройство и принцип работы приборов для измерения влажности воздуха.
15) Устройство и принцип работы приборов для измерения скорости движения воздуха.
16) Кататермометрия. Определение охлаждающих свойств и малых скоростей движения воздуха.
17) Кратность воздухообмена, значение, определение.
Самостоятельная работа студентов
Определение атмосферного давления, температуры, влажности,
скорости движения воздуха
Приборы для определения атмосферного давления
· Барометр ртутный сифонный представляет собой У-образную трубку, наполненную ртутью, с открытым концом в меньшем колене и с запаянным концом в длинном колене. В этом барометре давление измеряется в миллиметрах по разности между высотой ртутного столба в длинном колене и высотой столба в открытом колене.
· Барометр ртутный чашечный состоит из вертикальной, наполненной ртутью трубки, верхний конец которой запаян, а нижний опущен в чашечку с ртутью. При увеличении атмосферного давления воздух давит на поверхность ртути в чашечке. Часть ртути входит в трубку и уровень ее повышается. Измерения производятся в миллиметрах ртутного столба.
· Барометр-анероид состоит из безвоздушной металлической коробки с упругими волнообразными стенками. Колебания атмосферного давления отражаются на объеме и форме коробки, стенки которой прогибаются или выпрямляются. Эти движения посредством пружины и системы рычажков передаются стрелке, движущейся по циферблату.
· Барограф - самопишущий прибор, применяемый для систематических наблюдений за ходом барометрического давления в течение определенного промежутка времени. Главную часть его составляет ряд анероидных коробок. При изменении давления крышки этих коробок перемещаются, что передается по системе рычажков стрелке с пером, укрепленной около вращающегося барабана. На последний надета разграфленная на миллиметры ртутного столба бумажная лента. При увеличении давления перо стрелки поднимается кверху, при снижении давления - опускается книзу.
Приборы для определения температуры воздуха
Измерение температуры воздуха проводят с помощью ртутных и спиртовых термометров. Наибольшее распространение получили ртутные термометры. Это объясняется их большой точностью и возможностью применения в широких пределах от -35° до +35°С. Спиртовые термометры менее точны, так как спирт при нагревании выше 0°С расширяется неравномерно, но зато они дают возможность измерить очень низкие температуры. Термометры градуируются в градусах Цельсия.
· Максимальный термометр (ртутный). Представителем его является медицинский термометр. В приборе при переходе резервуара для ртути в капилляр имеется сужение, и ртуть преодолевает его только при повышении температуры под влиянием силы расширения. При понижении температуры ртуть вниз не падает. Для повторного измерения необходимо вогнать ртуть обратно в резервуар энергичным встряхиванием.
· Минимальный термометр (спиртовой) имеет в капилляре стеклянную иглу-указатель с утолщениями на конце. Температура измеряется в горизонтальном положении (предварительно игла-указатель опускается до мениска спирта - пленки поверхностного натяжения). При понижении температуры поверхностная пленка увлекает за собой стрелку вниз к резервуару и устанавливает ее в положении, соответствующем минимуму наблюдавшейся температуры. При повышении температуры спирт, расширяясь, проходит мимо стрелки, не сдвигая ее с места, так как сила трения утолщений стрелки достаточна, чтобы удержать ее на месте.
· Термограф - самопишущий прибор, применяемый для систематических наблюдений за ходом температуры. Воспринимающей частью прибора является биметаллическая пластинка, состоящая из двух спаянных между собой пластинок металла с разными температурными коэффициентами. При колебании температуры изменяется изгиб пластинки, что передается через систему рычажков стрелке с пером, скользящим по особо разграфленной бумаге, надетой на вращающийся барабан.
Исследование температурного режима воздуха помещений
Измерение проводят в пяти точках: по вертикали - в трех точках: 0,1 – 1 – 1,5 м от пола (колебания температуры не должны превышать 2,5° между крайними точками измерения); по горизонтали - в двух точках: 10-15 см от наружной и внутренней стен помещения на высоте 1,5 м (колебания температуры не должны превышать 2°). Средняя температура воздуха в учебных комнатах, жилых помещениях, больничных палатах должны находиться в пределах 18-24°С, в спортивных залах - 17-20°С, в ротных спальнях казарм, школьных мастерских - 16- 18°С, в операционных - 22°С.
Приборы для определения влажности воздуха
· Психрометр Августа состоит из двух спиртовых термометров. Резервуар одного из них обернут тонкой материей, конец которой опущен в дистиллированную воду. Через 10-15 минут наблюдения снимают показания с сухого и влажного термометров. По разнице показаний по таблице определяют относительную влажность воздуха. Разница будет тем больше, чем суше воздух.
· Психрометр Ассмана является более усовершенствованным прибором. Ртутные термометры заключены в металлические трубки, через которые равномерно просасывается исследуемый воздух с помощью заводного вентилятора, находящегося в верхней части прибора. Резервуар влажного термометра обернут кусочком батиста, который перед каждым наблюдением смачивают дистиллированной водой. Через 5 минут от начала работы снимают показания термометров и по таблице определяют относительную влажность воздуха.
· Гигрометр. Принцип работы основан на способности волоса в силу гигроскопичности удлиняться во влажной среде и укорачиваться в сухой. Вымытый и обезжиренный волос укреплен в раме, нижний конец его через блок соединен со стрелкой, скользящей по шкале, на которую нанесены цифры, показывающие относительную влажность. Гигрометры являются менее точными приборами, чем психрометры.
· Гигрограф - самопишущий прибор, применяемый для систематической записи относительной влажности воздуха. Гигроскопическим телом является пучок волос, закрепленный на раме с обеих сторон. В середине пучок оттянут при помощи крючка. При увеличении или уменьшении длины волос в зависимости от изменения относительной влажности происходит перемещение срединной точки пучка. Это передается через систему рычажков на стрелку с пером, вычерчивающим на ленте вращающегося барабана кривую влажности воздуха.
Относительная влажность воздуха в различных помещениях нормируется в пределах 30-70%.
Приборы для определения скорости движения воздуха
· Чашечный анемометр позволяет измерять скорость движения воздуха от 1 до 50 м/сек. Верхняя часть его состоит из крестовины с четырьмя полыми полушариями, обращенными выпуклостью в одну сторону. Нижний конец оси с крестовиной соединен с измерительным устройством (счетчиком оборотов). При наблюдениях становятся лицом к ветру и устанавливают прибор так, чтобы измерительное устройство было обращено к наблюдателю. Записывают показания прибора, т.е. положение стрелок на циферблате, указывающих количество метров, начиная с тысяч (первая малая стрелка), затем сотен (вторая малая стрелка) и единиц (большая стрелка). Дают чашечкам вращаться 1-2 минуты вхолостую, чтобы они приняли постоянную скорость вращения, а затем одновременно включают счетчик анемометра и секундомер. Через 5-10 минут счетчик выключают и записывают новые показания стрелок. Разница в показаниях стрелок между вторым и первым отсчетами покажет число метров, пройденных воздушным потоком за период наблюдения. Для нахождения скорости движения воздуха необходимо разделить найденное число на количество секунд, в течение которых работал анемометр.
Пример:
До наблюдения: После наблюдения:
1 малая стрелка (1000) - 4 между 4 и 5
2 малая стрелка (100) - 2 между 6 и 7
Большая стрелка - 0 80
Запись - 4200 4680
Разница = 4680 - 4200 = 480 м
Скорость движения воздуха = 480 м : 300 сек = 1,6 м/сек.
· Крыльчатый анемометр отличается большей чувствительностью и пригоден для измерения более слабых потоков воздуха в пределах от 0,5 до 15 м/сек. Воспринимающей частью прибора является колесико с легкими алюминиевыми крыльями, огражденными широким металлическим кольцом. Принцип работы прибора аналогичен предыдущему.
· Кататермометр - прибор, предназначенный для определения малых скоростей движения воздуха (до 1-2 м/сек). Кататермометр представляет собой спиртовой термометр с цилиндрическим или шаровым резервуаром со шкалой, разделенной на градусы соответственно от 35°до 38°С и от 33° до 40°С. В начале определяется охлаждающая способность воздуха (один из методов учета суммарного действия на организм температуры, влажности и скорости движения воздуха). Кататермометр опускают в горячую воду (около 80°С) и нагревают до тех пор, пока спирт не поднимется до половины верхнего расширения капилляра. После этого прибор вытирают и вешают в месте наблюдения. Затем отмечают по секундомеру время, в течение которого столбик спирта опустится с 38° до 35°С. Величину охлаждения находят по формуле: Н= F / а, где Н – искомая величина охлаждения; F - фактор прибора (постоянная величина, показывающая количество тепла, теряемого с 1 см2 поверхности резервуара кататермометра за время его охлаждения с 38° до 35°С, в мкал/см2); а - время охлаждения прибора в секундах.
Установлено, что оптимальное тепловое самочувствие у лиц так называемых сидячих профессий совпадает с величиной охлаждения кататермометра в пределах 5,5 -7,0 мкал/см2 х сек.
Для нахождения скорости движения воздуха предварительно определяют выражение Н/Q (Q – разность между средней температурой тела 36,5° и температурой окружающего воздуха). Затем по таблице находят соответствующую этой величине скорость движения воздуха.
Скорость движения воздуха в учебных комнатах, жилых помещениях нормируется в пределах 0,2 - 0,4 м/сек, в операционных - 0,15 м/сек.
В настоящее время для измерения физических свойств воздуха предлагаются разнообразные приборы. Измеренные ими показатели выводятся в цифровом виде на дисплей. Многие приборы имеют встроенную память, выход на компьютер. Приводим примеры некоторых из них:
Дата: 2019-03-05, просмотров: 252.