Определение блеска лакокрасочных покрытий. Сущность основных методов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

блеск: Отношение светового потока, отраженного от образца в зеркальном направлении к приемнику (источник и приемное устройство расположены под заданным углом), к световому потоку, отраженному в зеркальном направлении от стекла с показателем преломления 1,567.

При проведении измерений используют обычное лабораторное оборудование, а также: пластинки для испытаний покрытий

Пластинки должны быть из стекла с гладкой поверхностью, толщиной не менее 3 мм и размером 150 × 100 мм. Размер их должен быть больше или равен длине освещенной площади.

Для нанесения лакокрасочного материала на пластинки используют рамочный аппликатор, имеющий на нижней поверхности такую прорезь, чтобы при наложении на оптически плоскую поверхность образовывался зазор высотой (150±2) мкм, или другое устройство, указанное в нормативной или техническом документе на испытуемый лакокрасочный материал.

Блескомер состоит из источника света, линзы, направляющей пучок параллельных лучей на испытуемую поверхность, и приемного устройства, состоящего из линзы, полевой диафрагмы и фотоэлемента, воспринимающего отраженный свет в заданном телесном угле.

Блескомер должен иметь следующие характеристики:

а) Геометрия освещения/наблюдения

G - лампа: L1, L2 - линзы; В - полевая диафрагма приемного устройства; P - лакокрасочное покрытие; e1 - угол падения, e2 - угол отражения (e1 = e2); sВ - апертурный угол приемной системы; sS - апертурный угол изображения источника; I - изображение нити накала

Рисунок 1 - Схеме устройства блескомера (сечение в плоскости проведения измерения) b) Коэффициент пропускания корригирующего светофильтра

c) Виньетирование

Не допускается виньетирование лучей в пределах углов, указанных в 5.3, перечисление а).

d) Измерительное устройство приемной системы

Показание измерительного устройства приемной системы должно быть пропорционально мощности светового потока, проходящего через ее полевую диафрагму. Точность показания должна быть в пределах 1 % от показаний всей шкалы.

 Измерение блеска покрытий

После настройки блескомера проводят три измерения блеска испытуемых покрытий на стеклянных пластинках, располагая их в разных положениях, но обязательно параллельно направлению нанесения материала, проверяя отсутствие дрейфа показаний прибора после каждой серии измерений с помощью рабочего контрольного образца с большим блеском. Если разброс показаний менее пяти единиц, записывают среднее значение как значение блеска. В противном случае проводят следующие три измерения и записывают среднее значение и разброс результатов всех шести измерений.

Для измерения блеска покрытий не на стеклянных пластинках проводят шесть измерений, по три в каждом из двух взаимно перпендикулярных направлений, и записывают среднее значение и разброс результатов всех шести измерений. Проверяют показания рабочего контрольного образца с большим блеском после трех измерений, чтобы проверить прибор на отсутствие дрейфа показаний.

Измерение блеска окрашенных пластинок

По методике, указанной в 10.1, проводят шесть измерений на различных участках или в различных направлениях поверхности (за исключением покрытий с направленной текстурой, такой, как мазки кисти). Проверяют показание рабочего контрольного образца с большим блеском после трех измерений, чтобы проверить прибор на отсутствие дрейфа показаний. Рассчитывают среднее значение. Если разница между наибольшим и наименьшим значениями менее 10 единиц или 20 % среднего значения, записывают среднее значение и разброс результатов всех измерений. В противном случае признают пластинку для испытаний бракованной.

 

Отвердители и отверждающие системы лакокрасочных материалов. Примеры.

Отвердители, или структурирующие добавки, необходимый компонент термопревращаемых порошковых красок олигомерного типа эпоксидных, полиэфирных, полиакрилатных, полиуретановых, кремнийорганических и других. Их вводят нередко и в рецептуры полимерных композиций поливинилбутиральных, полиэтиленовых и других с целью получения необратимых покрытий.

Для активации процесса отверждения снижения температуры или ускорения формирования покрытий часто применяют ускорители, или активаторы, комбинируя их с соответствующими отвердителями.

От типа отверждающей системы зависят многие свойства красок: их стабильность, условия отверждения, а также внешний вид, механические, электрические и защитные свойства покрытий. Получение структурированных покрытий из порошковых красок в отличие от жидких имеет ряд особенностей, которые следует учитывать при выборе отвердителей и ускорителей процесса отверждения.

Из отверждающих добавок в наибольшей степени оправдало себя применение скрытых, так называемых латентных, отвердителей, проявляющих свою реакционную способность лишь выше определенной температуры или по истечении некоторого времени теплового воздействия. Нагревание не только ослабляет межмолекулярное взаимодействие и понижает вязкость пленкообразователя, но и активирует молекулярные цепи, делая их более реакционноспособными. Поэтому длительное нагревание или чрезмерное повышение температуры обычно не исправляет дефектов пленки (плохой розлив, неполная коалесценция частиц), обусловленных преждевременным структурированием пленкообразователя.

Ускорение процесса отверждения покрытий может быть достигнуто не только применением химического инициирования или катализа, но и посредством фотохимического и радиационного воздействия на расплав порошковой композиции. В этом случае не возникает проблемы обеспечения стабильности красок при хранении и переработке; реализация этого пути, однако, связана с разработкой и применением специальных порошковых красок фого- и радиационного отверждения.

Эпоксидные краски. При всем многообразии отвердителей эпоксиолигомеров для получения порошковых красок нашли применение лишь немногие. Это прежде всего соединения, относящиеся к классам цианамидов (дициандиамид, модифицированный дициандиамид и различные его производные), ароматических аминов, многоосновных кислот и ангидридов кислот. Также используются дигидразиды, блокированные изоцианаты, комплексные соединения аминов с трифторидом бора, вещества, содержащие активные функциональные группы (феноло-, мочевино- и меламиноформальдегидные олигомеры, полиамиды и др.).

Дициандиамид (ДЦДА) первый отвердитель промышленных порошковых красок находит применение и в настоящее время. Он имеет плотность 1,4, температуру плавления 205 С, растворимость в воде при 25 С 4,1 -4,2%

Полиэфирные краски. В соответствии с характером функциональных групп (гидроксильные или карбоксильные) полиэфирного пленкообразователя нашли применение в качестве отвердителей следующие классы соединений: многоосновные кислоты и ангидриды кислот, меламиноформальдегидные олигомеры, эпоксисоединения, олигомеры, содержащие карбоксильные, гидроксильные, эпоксидные и другие группы.

Распространенным отвердителем этого типа является гексаметоксиметилмеламин (сокращенное название ГМ-3). Отвердитель ГМ-3 представляет собой белое воскообразное вещество с плотностью 1,2 г/см3 и температурой плавления 30-50 С: применяется индивидуально или в смеси с кислыми ускорителями. При его введении время отверждения красок на гидроксилсодержащих полиэфирах при 180 С не превышает 30 мин. Недостаток ГМ-3 как отвердителя его водорастворимость, что отрицательно сказывается на сыпучести порошков (из-за влагопоглощения) и водостойкости получаемых покрытий. Отмечается также образование кратеров и пузырей при отверждении составов в толстых слоях.

Пленкообразователями в порошковых полиакрилатных красках обычно служат глицидил- или карбоксил-содержащие акрилатные сополимеры. Учитывая природу реакционноспособных функциональных групп, в качестве отверждающих агентов для глицидилсодержащих сополимеров применяют поликарбоновые насыщенные и ненасыщенные кислоты и их ангидриды, полиэфиры и эпоксиэфиры, содержащие карбоксильные группы, третичные амины. В выборе отвердителей для этих композиций имеется много общего с эпоксидными краскам.

Полиуретановые краски. Отвердителями полиуретановых составов служат в основном блокированные («скрытые») изоцианаты. Их комбинирование с гидроксилсодержащими пленкообразователями (полиэфирами, эпоксидными олигомерами, полиакрилатами и др.) позволяет получать стабильные при хранении композиции, способные быстро отверждаться при температурах выше температур деблокирования изоцианатов.                                            Поливинилбутиральные краски. Покрытия из поливинилбутираля применяют в основном неструктурированными, однако могут быть получены и трехмерные покрытия. Сшивание цепей может происходить за счет как имеющихся в полимере гидроксильных групп, так и групп, вновь образующихся в результате разрыва апетальных связей.

Структурирующими агентами поливинилбутираля являются многоосновные органические и неорганические кислоты и ангидриды кислот, фенолоформальдегидные олигомеры резольного и новолачного типа, блокированные изоцианаты.

Из перечисленных агентов наилучшие результаты дает применение скрытых отвердителей, т.е. веществ, проявляющих свою реакционную способность после завершения процесса пленкообразования. Ими являются, в частности, блокированные изоцианаты и аммониевые соли ортофосфорной кислоты, прежде всего одно- и двухзамещенные фосфаты аммония. Действие солей основано на их способности диссоциировать при нагревании с выделением аммиака и кислоты. Температурная область диссоциации совпадает с температурными пределами образования покрытий (220-250 С), однако диссоциация протекает медленнее, чем пленкообразование. Это приводит к тому, что выделяющаяся фосфорная кислота взаимодействует с полимером в основном после аутогезии частиц. Будучи твердыми кристаллическими веществами, аммонийфосфаты не снижают сыпучести и химической стабильности порошков при хранении. Полиэтиленовые краски. Структурирующими агентами полиэтилена служат органические пероксиды (бензоил- и дикумилпероксиды), 2,5-диметил-2,5-ди-тет-бутилпероксигексан, 1,3-ди-трет-бутилпероксиизопропилбензол, сера и различные серосодержащие соединения (дибензтиазилдисульфид, меркаптобензтиазол и др.), хинон-М-галогенимиды, пероксикарбонаты, азиды, силаны.

При структурировании полиэтилена существенно меняется его структура: уменьшается степень кристалличности, изменяется морфология надмолекулярных структур, образуются мостичные связи, характер которых зависит от условий проведения процесса. Эти изменения в структуре положительно сказываются на свойствах полиэтилена и получаемых из него покрытий. В частности, снижается модуль упругости полимера и увеличиваются прочность при растяжении, относительное удлинение и адгезия покрытий. Запас прочности покрытий, представляющий собой отношение разрушающего напряжения при растяжении к величине внутренних напряжений, возрастает от 2 до 5. Указывают, что адгезия образцов к стали при структурировании в присутствии дикумилпероксида увеличивается в 2-5 раз. Таким образом, вероятность растрескивания и отслаивания покрытий при длительной эксплуатации резко уменьшается.

Дата: 2019-03-05, просмотров: 233.