Шум — совокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени. По своей физической природе шум представляет собой волнообразно распространяющиеся механические колебания частиц упругой среды (газовой, жидкой или твердой).
Его источником является любое колеблющееся тело, выведенное из устойчивого состояния внешней силой. Например, при работе станков, использовании ручного инструмента вследствие соударения, трения, скольжения, истечения струй жидкостей и газов возникают колебательные движения, которые передаются воздушной среде и распространяются в ней, образуя звуки. Звуковая волна распространяется от источника механических колебаний в виде зон ритмического сгущения и разрежения примыкающей среды. В настоящее время шум является одним из распространенных действующих факторов внешней среды, что обусловлено ростом числа промышленных предприятий, развитием реактивной авиации, транспорта и др. Широкое использование новых высокопроизводительных видов оборудования с постоянным увеличением скоростей движения машин и механизмов, применение пневматического инструмента, мощных насосов, компрессоров, центрифуг, вентиляторов и других механизмов создают предпосылки для возникновения новых источников шума.
Параметры шума на рабочих местах могут достигать значительных величин. Так, испытание дизельного и электрического двигателей сопровождается шумом с уровнем звукового давления до 136 дБ. Высокие уровни шума отмечаются у щековых и конусных дробилок — 100—125 дБ, у шаровых мельниц — 91 дБ и выше. Шум, генерируемый прессовым оборудованием в штамповочных цехах, составляет 98—126 дБ.
Воздействие шума на организм может проявляться в виде специфического поражения органа слуха в сочетании с нарушениями со стороны ряда органов и систем. Вначале имеет место быстропреходящее понижение слуха. Однако при дальнейшем воздействии интенсивного шума происходят перераздражение клеток звукового анализатора и его утомление. Это состояние проявляется в ослаблении слуховой чувствительности к концу работы, особенно к высоким частотам. Процесс восстановления может продолжаться от нескольких минут до 2—3 дней и более. Происходящее изо дня в день перераздражение слухового анализатора может явиться причиной постепенного развития профессиональной тугоухости (стойкое снижение остроты слуха). Причиной развития данной патологии является поражение звуковоспринимающего аппарата, при котором имеют место деструктивные изменения в спиральном органе (кортиев орган). Степень профессиональной тугоухости зависит от производственного стажа работы в условиях шума, его характера, интенсивности, длительности воздействия, спектрального состава. Отмечено, что повреждающее действие шума находится в прямой зависимости от его высоты (частоты). Так, наиболее ранние и более выраженные изменения происходят при воздействии шума с высотой 4000 Гц и близкой к ней области. Импульсный шум (выстрел, взрыв, удар и т. д.) оказывает более сильное повреждающее действие, чем стабильный шум аналогичной мощности.
Постоянное действие шума на организм вызывает поражение в первую очередь ЦНС. Функциональные изменения в нервной системе наступают раньше, чем диагностируется нарушение слуховой чувствительности. При этом преобладают признаки астеновеге - тативных нарушений — раздражительность, ослабление памяти, апатия, подавленное настроение, гипергидроз, расстройство сна и др. В ряде случаев могут развиться тремор век и пальцев рук, снижение роговичного и брюшного рефлексов.
Влияние шума на сердечно-сосудистую систему проявляется в повышении артериального давления, болевых ощущениях в области сердца, урежении пульса. Под воздействием шума у работающих наблюдаются изменения секреторной и моторной функций желудочно-кишечного тракта, ослабление иммунологических сил организма, нарушения обменных процессов.
Шум снижает производительность и качество умственной работы. В результате его воздействия нарушаются концентрация внимания, точность и координированность движений, ухудшается восприятие звуковых и световых сигналов, возникает чувство усталости. Ультразвук. Ультразвук представляет собой механические колебания упругой среды с частотой выше 20 кГц в секунду, которые не воспринимаются органом слуха.
В настоящее время удается получить ультразвуковые колебания с частотой до 10 ГГц.
По своей природе ультразвуковые волны не отличаются от упругих волн слышимого диапазона. Распространение ультразвука подчиняется основным законам, общим для акустических волн любого диапазона частот. К основным законам распространения ультразвука относятся законы отражения и преломления на границах различных сред, дифракции и рассеяние ультразвука при наличии препятствий и неоднородностей на границах, законы волнового распространения в ограниченных участках среды.
Высокая частота ультразвуковых колебаний и малая длина волн обусловливают ряд специфических свойств ультразвука, в частности, ультразвук можно визуально наблюдать оптическими методами. Благодаря малой длине волны ультразвуковые волны хорошо фокусируются, что дает возможность получать направленное излучение. Кроме того, для ультразвука характерно получение высоких значений интенсивности при относительно небольших амплитудах колебаний.
Ультразвук нашел применение во многих областях техники и промышленности, особенно при проведении различных анализов и контроля, например структурном анализе вещества, определении физико-химических свойств материала, дефектоскопии. Ультразвук используется при очистке и обеззараживании деталей, ускорении химических реакций. Широкое применение нашел ультразвук в медицине при лечении заболеваний позвоночника, суставов, периферической нервной системы.
Установлено, что ультразвуковые колебания способны поглощаться тканями тела человека, причем с увеличением частоты этих колебаний увеличивается их поглощение и уменьшается глубина проникновения в ткани человека. Поглощение ультразвука сопровождается нагреванием среды. При систематическом воздействии ультразвука могут наблюдаться функциональные изменения со стороны ЦНС и периферической нервной системы, сердечно-сосудистой системы, слухового и вестибулярного аппаратов и др. В ряде случаев развиваются вегетативно-сосудистые расстройства в виде полиневритов, парестезий нижних и верхних конечностей. При длительном влиянии ультразвука развиваются общая слабость, повышенная утомляемость, расстройство сна, появляются головные боли, чувство давления в ушах, неуверенность походки, головокружение. При большом стаже работы на ультразвуковых установках отмечаются случаи выраженного диффузного понижения слуха. Инфразвук. Инфразвук представляет собой механические колебания, распространяющиеся в упругой (например, твердой, жидкой или газообразной) среде с частотой менее 20 Гц. Он характеризуется такими же параметрами, как и звук. Чем больше амплитуда колебаний, тем больше инфразвуковое давление и соответственно сила инфразвука. Интенсивность ин - фразвуковой энергии выражают в ваттах на квадратный метр (Вт/м2).
Источниками инфразвуков в природе могут быть такие явления, как землетрясение, извержение вулканов, морские бури. В производственных условиях инфразвук образуется при работе компрессорных установок, турбин, дизельных двигателей, электровозов, промышленных вентиляторов и других агрегатов, а также в авиационной и космической технике.
Как показывают исследования, организм человека весьма чувствителен к действию инфразвука. При длительном воздействии инфразвука наблюдается значительная астенизация, выражающаяся в появлении слабости, быстрой утомляемости, снижении работоспособности, появлении раздражительности. В ряде случаев наблюдаются нервно-вегетативные и психические нарушения. Так, у лиц, работающих на расстоянии 200— 300 м от реактивных самолетов, отмечались беспричинный страх, повышение артериального давления, обморочное состояние.
Под влиянием инфразвука повышается обмен веществ, отмечаются вестибулярные нарушения, снижение остроты зрения и слуха, изменение ритма дыхания и сердечных сокращений. Одновременно возможны нарушения периферического кровообращения, деятельности ЦНС, пищеварения. Инфразвуковые колебания с уровнем звукового давления 150 дБ являются пределом переносимости при кратковременном воздействии на человека. Наиболее опасен инфразвук частотой 8 Гц, так как при этом возможно развитие резонанса, в частности с альфа-ритмом биотоков мозга. При частотах от 1 до 3 Гц наблюдаются кислородная недостаточность, нарушение ритма дыхания, а при частотах 5—9 Гц отмечаются болезненные ощущения в грудной клетке и нижней части живота (табл. 8.3).
В исследованиях на добровольцах изучалось действие инфразвука частотой ниже 20 Гц и уровнем звукового давления от 119 до 144 дБ и длительностью 3 мин. Испытуемые (21 человек в возрасте 21—33 лет) жаловались на резкую слабость, адинамию, чувство страха, учащение дыхания, изменение ритма сердечной деятельности, абдоминальный спазм, временный сдвиг порога слышимости на высоких частотах. Все добровольцы субъективно отмечали ощущение вибрации в теле, пространственную дезориентацию, понижение сенсорной чувствительности, умственную спутанность (умственную конфузию), а в некоторых случаях полную прострацию, которую испытывают люди после сильного нервного потрясения. Несмотря на то что нарушения в работе вестибулярного аппарата наблюдались только у одного человека, авторы полагают, что при продолжительном действии инфразвука этот эффект может быть самым значительным.
Дата: 2019-03-05, просмотров: 212.