Также как и холодильные машины, тепловые насосы относят к трансформаторам тепла. Принципиального различия в работе и в конструкции между ними не существует. Различается лишь назначение, и, температурный уровень получаемой теплоты. Цель холодильной машины - получение теплоты с температурой ниже уровня температуры окружающей среды, т. е. производство холода. Холод в парокомпрес - сионной холодильной установке получается в виде охлажденного теплоносителя (рассолы, антифризы, воздух, вода) выходящего из испарителя. Цель теплового насоса - получение теплоты, которая в случае парокомпрессионного теплового насоса получается в виде нагретого теплолносителя (воды, воздуха), выходящего из конденсатора.
Основными характеристиками теплового насоса являются - коэффициент преобразования (трансформации) тепла, термодинамический КПД, удельная стоимость, т. е. стоимость, отнесенная к теплопроиз - водительности теплового насоса. |
Принцип действия парокомпрессионного теплового насоса может быть проиллюстрирован при помощи рис.23, на котором изображены его схема и термодинамический цикл в диаграмме T-s («температура- энтропия»). Тепловой насос действует за счет подведенной в компрессоре механической работы. Привод компрессора может осуществляться от электрического или теплового двигателя. В компрессоре (процесс 1-2) повышается давление рабочего вещества, находящегося в парообразном состоянии от давления P1 до давления P2. Затем в конденсаторе (процесс 2-3) при постоянном давлении происходит конденсация рабочего вещества. Получаемое при конденсации тепло передается потребителю при температуре T2, например, нагревая воду, направляемую в систему отопления. В дросселе происходит расширение рабочего вещества до давления P1 с его частичным испарением (процесс 3-4). Далее, рабочее вещество полностью превращается в пар при температуре T1 в испарителе, где отбирается теплота от ее источника, например от нагретого вентиляционного воздуха или продуктов сгорания.
I - испаритель, II - компрессор, III - конденсатор, IV - дроссель. |
Коэффициент преобразования тепла представляет собой отношение получаемой тепловой мощности к затрачиваемой мощности на привод компрессора. Он выше единицы, и существенно зависит от температуры холодного источника теплоты T1 и температуры получаемого горячего теплоносителя T2. В результате работы теплового насоса мы можем получить примерно в 2 - 8 раз больше теплоты, чем в случае непосредственного подогрева теплоносителя в электрокалорифере.
2 |
Для людей, не знакомых с работой тепловых насосов, это обстоятельство кажется нарушением первого закона термодинамики. На самом деле - это не так. В данном случае мы лишь трансформируем теплоту более низкого потенциала в теплоту более высокого потенциала - т. е. другого температурного уровня. Коэффициент преобразования тепла не является коэффициентом полезного действия теплонасосной установки. Известно, что качество вида энергии зависит то его способности превращаться в другой вид энергии. Если механическая работа в идеальном процессе может быть полностью превращена в другой вид энергии, то теплота даже в идеальном процессе лишь частично превращается в механическую работу. Степень превращения теплоты в работу характеризуется работоспособностью или эксергией потока теплоты и существенно зависит от температурного уровня потока теплоты, а также от температуры окружающей среды.
Термодинамическое совершенство теплового насоса определяется его эксергетическим КПД. Он может быть вычислен следующим образом:
Q • w,,,,
Пе = —в---------------------------------------------------------------------- (41)
N
(42) |
Здесь w - температурная функция или коэффициент работоспособности теплоты, определяемая как
T - T„,
W=
Как видно, эксергетический КПД теплонасосной установки всегда меньше единицы.
Примерная зависимость коэффициента трансформации тепла от температуры представлена на рис 24. Как видно, в случае малой разности температур в испарителе и конденсаторе коэффициент трансформации может достигать больших значений. На практике при современном уровне цен на оборудование и энергоносители рекомендуют применять тепловые насосы с коэффициентом трансформации не ниже 2,5.
" П
A) |
0,4
0,3 0,2 0,1
0 -10 -20 -30 -40 to 0 -10 -20 -30 t0 , оС
Б)
Рис.24. Зависимость холодильного коэффициента (а) и эксергетического КПД (б) от температур конденсации и испарения.
Удельная стоимость тепловых насосов, выпускаемых в России по данным [9] для мощностей от 100 до 10000 кВт составляет 6000-7000 рублей за киловатт установленной тепловой мощности (включая монтаж). Стоимость тепловых насосов, выпускаемых зарубежными фирмами несколько выше. Следует ожидать, что с увеличением числа отечественных производителей удельная стоимость тепловых насосов будет понижаться.
Характеристики теплового насоса во многом зависят от применяемого рабочего вещества. В этом качестве чаще всего применяются различные фреоны (хладоны) - галогенопроизводные предельных угле
водородов. Используются такие фреоны, как R-22, R134a, R-407C а также озонобезопасный фреон R- 142B. Применение фреона R-22 разрешено Монреальской конвенцией лишь до 2005 года. Характеристики фреонов во многом определяют коэффициент преобразования тепла и следовательно, экономичность теплового насоса. Теплофизические и термодинамические свойства фреонов можно найти в [10].
Дата: 2019-03-05, просмотров: 215.