Тема 17. Компьютерный анализ и проектирование аналоговых устройств
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

 

17.1. Математические модели аналоговой РЭС

 

Использование основных положений схемотехнического моделирования для проектирования сложной аналоговой РЭС на метауровне оказывается затруднительным. Это связано с чрезмерно большими размерностями задач. Для их решения используются упрощения. Основой снижения размерности задач является макромоделирование. Часто вводят ряд дополнительных упрощений и допущений. Главные из них формулируются следующим образом.

Однонаправленность в передаче сигналов, т. е. применение макромоделей, в которых отсутствует влияние выходных переменных на состояние входных цепей.

Отсутствие влияния нагрузки на параметры и состояние моделируемых систем.

Использование вместо фазовых переменных двух типов (напряжение и ток) переменных одного типа, называемых сигналами. При этом компонентные уравнения элемента представляют собой уравнения связи сигналов на входах и выходах этого элемента.

Линейность моделей инерционных элементов.

Перечисленные допущения характерны для функционального моделирования, широко применяемого для анализа систем автоматического управления. Элементы (звенья) систем при функциональном моделировании делят на три группы:

линейные безынерционные звенья для отображения таких функций, как повторение, инвертирование, чистое запаздывание, идеальное усиление, суммирование сигналов;

нелинейные безынерционные звенья для отображения различных нелинейных преобразований сигналов (ограничение, детектирование, модуляция и т. п.);

линейные инерционные звенья для выполнения дифференцирования, интегрирования, фильтрации сигналов.

Инерционные элементы представлены отношениями преобразованных по Лапласу или Фурье выходных и входных фазовых переменных. При анализе во временной области применяют преобразование Лапласа - модель инерционного элемента с одним входом и одним выходом есть передаточная функция; а при анализе в частотной области (преобразование Фурье) модель элемента есть выражения амплитудно-частотной и частотно-фазовой характеристик. При наличии нескольких входов и выходов ММ элемента представляется матрицей передаточных функций или частотных характеристик.

Допущения, принимаемые при функциональном моделировании, существенно упрощают алгоритмы получения математических моделей систем (ММС) из математических моделей элементов (ММЭ).

Математическая модель системы представляет собой совокупность ММЭ, которые входят в систему, при отождествлении переменных, относящихся к соединяемым входам и выходам.

 

 

17.2. Математические модели логических схем цифровой РЭС

На функционально-логическом уровне необходим ряд положений, которые упрощают модели устройств. Это позволяет анализировать более сложные объекты по сравнению с объектами, анализируемыми на схемотехническом уровне. Часть используемых положений аналогична положениям, принимаемым для моделирования аналоговой РЭС.

Во-первых, существует положение о представлении состояний объектов с помощью однотипных фазовых переменных (обычно напряжений), называемых сигналами.

Во-вторых, не учитывается влияние нагрузки на функционирование элементов-источников.

В-третьих, принимается допущение об однонаправленности, т. е. о возможности передачи сигналов через элемент только в одном направлении - от входов к выходам.

Дополнительно к этим положениям при моделировании цифровой РЭС принимается положение о дискретизации переменных, их значения могут принадлежать только заданному конечному множеству - алфавиту, например, двоичному алфавиту {0,1}.

Моделирование цифровой РЭС возможно с различной степенью детализации. На логическом (вентильном) подуровне функционально-логического проектирования в качестве элементов аппаратуры рассматривают простые схемы типа вентилей, на регистровом подуровне элементами могут быть как отдельные вентили, так и любые более сложные сочетания простых схем, например, регистры, счетчики, дешифраторы, сумматоры, арифметико-логические устройства и т. п.

Рассмотрим математические модели элементов на логическом подуровне. Для одновыходных комбинационных элементов ММ представляет собой выражение (в общем случае алгоритм), позволяющее по значениям входных переменных (значениям входов) в заданный момент времени вычислить значение выходной переменной (значение выхода) в момент времени где - задержка сигнала в элементе. Такую модель элемента называют асинхронной. При этом модель элемента называют синхронной. Модель многовыходного элемента должна включать в себя алгоритм вычисления задержек и значений всех выходных сигналов.

Для элементов последовательностных схем (элементов с памятью) используют модели, в которых аргументами выходных переменных могут быть как входные, так и внутренние переменные. Вектор внутренних переменных отражает состояние элемента (состояние его памяти).

Объединение моделей элементов в общую математическую модель системы выполняется на основе вышеперечисленных допущений отождествлением переменных на соединяемых входах и выходах элементов.

 

17.3. Автоматизация схемотехнического проектирования РЭС

Направления развития автоматизации разработки электронной аппаратуры. К числу наиболее значимых направлений развития автоматизации разработки электронной аппаратуры, в которых необходимо обеспечить кардинальное улучшение ситуации, следует отнести:

системный уровень разработки, позволяющий обеспечить совместное проектирование программных и аппаратных средств системы, автоматический синтез устройств, начиная с поведенческого описания, а также тестопригодность аппаратуры;

автоматизированную поддержку и контроль процесса проектирования сложных систем и устройств, выполняемого большим коллективом разработчиков;

наличие специализированных САПР, направленных на достижение наилучших результатов по некоторым параметрам, например, проектирование схем низкой мощности;

создание и использование международных стандартов в области автоматизации проектирования.

В настоящее время российские предприятия используют разрозненные, а подчас и устаревшие средства проектирования. Такая ситуация делает практически невозможным выход отечественных предприятий на международный рынок разработок. Наличие современных средств САПР у партнеров является непременным условием сотрудничества и кооперации. Исходя из имеющегося опыта, отметим, что в случае реальной заинтересованности зарубежного партнера в создании совместной разработки радиоэлектронных изделий с российским предприятием первые инвестиции направляются именно на создание современного подразделения проектирования (без чего совместная работа специалистов теряет смысл). Таким образом, создание единого проектного центра, который бы с использованием сети Internet предоставлял услуги по применению различных систем и средств проектирования радиоэлектронных изделий для заинтересованных предприятий, могло бы стать привлекательным инвестиционным проектом.

Особенности проектирования радиоэлектронных средств. Внедрение новой телекоммуникационной техники предъявило к электрическим параметрам РЭС ряд непрерывно усложняющихся требований. Возрастают требования к габаритам и массе РЭС, а также к надежности, серийности и минимизации потребляемой энергии. Отсюда следует необходимость использования в РЭС современной элементной базы. Проектировщики уже не в состоянии традиционными методами проектировать РЭС из-за все возрастающих требований к ним и значительного роста объема научно-технической информации, а это, в конечном итоге, приводит к несоответствию принимаемых ими проектных решений уровню лучших мировых образцов средств связи. К тому же, в последние десятилетия в развитии телекоммуникационной техники стала заметна тенденция к переходу от проектирования отдельных устройств узкого назначения к проектированию сложных аппаратных комплексов, предназначенных для решения широкого круга задач в изменяющихся внешних условиях, что еще бол ьше осложняет положение проектировщиков.

Кроме того, у проектировщиков РЭС возникла проблема: как повысить качество первоначального технического предложения, чтобы можно было частично или полностью исключить его отработку на лабораторном (материальном) макете? Это связано с тем, что обычно первоначальное техническое предложение весьма далеко от того, чтобы удовлетворить требования, выдвигаемые техническим заданием на отдельное устройство, систему или комплекс, и сильно зависит от опыта и знаний проектировщика. Последующее же совершенствование проектируемого РЭС на макете вовлекает в процесс проектирования значительные силы проектировщиков и производственников, работа которых оказывается малоэффективной из-за многочисленных и неизбежных переделок. В результате всего этого процесс проектирования недопустимо растягивается и становится чрезмерно дорогим, в то время как из-за непрерывной конкуренции возрастают требования к уменьшению времени проектировании РЭС и его цены, при необходимости одновременного повышения его качества. Таким образом, одним из важнейших направлений увеличения роста объемов производства телекоммуникационного оборудования на предприятиях, выпускающих эту продукцию в России, является разработка и совершенствование технологии автоматизированного проектирования и использование новых методов и средств автоматизации труда проектировщиков РЭС (в том числе САПР), позволяющих повысить не только их производительность труда, но и качество принимаемых ими проектных решений.

Особенности создания САПР РЭС. Разработка САПР РЭС - это сложная научно-техническая задача, требующая больших интеллектуальных и материальных затрат. Для успешного функционирования САПР необходимо развивать техническое обеспечение (ЭВМ, используемые в САПР), математическое и программное обеспечение (методы и алгоритмы, необходимые для решения задач проектирования, создания адекватных математических моделей физических компонентов), информационное обеспечение (базы данных и знаний, включающие описания стандартных процедур проектирования и типовых проектных решений).

Создание нового поколения элементной базы требует постоянного совершенствования центров и систем автоматизированного проектирования. Более того, само проектирование аппаратуры в настоящее время невозможно представить без широкого использования САПР различного уровня. Так, известные в настоящее время разработки в области САПР РЭС малоэффективны при решении задач схемотехнического синтеза на начальных этапах проектирования, особенно для широкого класса аналоговых РЭС (АРЭС) и аналого-цифровых (комбинированных) РЭС. Для них невозможно формализовать основные процедуры синтеза, которым на верхних уровнях абстракции иерархического описания РЭС при проектировании присущи интуитивно-логические рассуждения и субъективные эвристические представления.

Таким образом, для реализации проектирования РЭС главной нерешенной проблемой является автоматизация начальных этапов проектирования и использования результатов моделирования в процессе схемотехнического синтеза. Ее решение позволит производить сквозное автоматическое схемотехническое проектирование РЭС, которое обеспечит повышение скорости и качества проектирования РЭС, а также надежность спроектированного устройства.

Вышесказанное позволяет сделать вывод о необходимости разработки специального методического, алгоритмического и программного обеспечения, целью которого стало бы создание условий перехода к единому сквозному маршруту проектирования аппаратуры и элементной базы для нее.

Разработка сквозной САПР РЭС. Решение поставленной выше задачи предлагается осуществлять путем использования в САПР продукционной и объектно-ориентированной экспертных систем (ЭС). Такие системы реализуют неподдающиеся формализации методики проектирования РЭС, модифицированных методов моделирования и распределенной БД параметров электронных компонентов. При этом ЭС позволяют автоматизировать процесс накопления и формализации знаний высококвалифицированных проектировщиков - экспертов с возможностью их последующего использования при эксплуатации САПР пользователями невысокой квалификации. Применение двух методов (узловых потенциалов и переменных состояния) моделирования - анализа и оптимизации - позволяет проводить сравнение результатов их работы и корректировать процесс синтеза. Реляционная распределенная БД, включающая широкий набор параметров электронных компонентов, может использоваться в процессе как синтеза, так и анализа.

В связи с тем, что методики проектирования РЭС являются слабоструктурированными, для их формализации необходима структуризация РЭС и их элементов. Это требует разработки моделей узлов и каскадов РЭС как объектов проектирования в ЭС, учитывающих многообразие сложных взаимных связей и всесторонне раскрывающих аспекты РЭС. Рассмотрение таких аспектов является необходимым и достаточным для конструктивной реализации процесса их автоматического проектирования.

Адаптивные САПР. Дальнейшее развитие и совершенствование САПР приводит к созданию адаптивных САПР, способных приспосабливаться к специфическим свойствам решаемой задачи путем автоматической настройки структуры и состава ПО на задачу. Процесс адаптации в САПР может осуществляться на различных уровнях. При проблемной адаптации (на уровне методов и алгоритмов) происходит приспособление системы проектирования к специфическим свойствам решаемой задачи на уровне технического задания.

Так, возможность адаптации численного анализа электронных схем была подготовлена предшествующими работами по комбинированным методам анализа. Адаптация основана на совместном применении явных и неявных формул интегрирования путем предварительной настройки на определенную формулу или на пошаговую очередность применяемых формул. Адаптация численного анализа обеспечивает выбор и настройку соответствующего алгоритма в автоматическом режиме. Другим аспектом адаптации при численном анализе является адаптация на уровне алгоритмов. При этом широко используются приемы, которые состоят в разделении исходной модели на части (алгоритмическая декомпозиция). При этом каждая из частей может быть рассчитана по наиболее подходящему алгоритму (например, разделение вектора переменных на быструю и медленную составляющие, анализ схемы в различных частотных диапазонах с использованием различных эквивалентных представлений схемы).

При схемотехническом проектировании наряду с адаптацией на уровне алгоритмов синтеза и анализа успешно применяется адаптация на уровне математических моделей. Это относится как к моделированию активных компонентов (транзисторов, диодов, операционных усилителей и т. д.), так и к формированию математической модели всего проектируемого устройства в целом. Адаптация на уровне моделирования компонентов означает, что в процессе проектирования выбирается наиболее подходящая модель, которая подвергается целенаправленным изменениям в зависимости от особенностей решаемой задачи на различных частотных и временных интервалах.

При решении задач схемотехнического проектирования "большой размерности" в адаптивных САПР происходит адаптация математической модели всего объекта на основе макромоделирования и структурной декомпозиции (расщепление сложного объекта на части). Под макромоделированием понимается такой процесс, когда типовые фрагменты (подсхемы, функциональные микросхемы) представляются математическими моделями, которые можно встраивать в схему, располагая лишь знанием значений сигналов (токов, напряжений) на их внешних связях. При этом укрупняется само понятие "компонент", поскольку компонентом может быть сложная схема, а его описание существенно упрощается. В этом случае адаптация в процессе проектирования обеспечивается выбором наиболее подходящей математической модели для каждого фрагмента схемы с учетом взаимных влияний и связей этих фрагментов. Процесс адаптации на уровне макромоделей заключается в том, что некоторый фрагмент схемы на разных уровнях проектирования (или при решении разных задач) пр едставляется в виде целого набора макромоделей различной степени сложности. В процессе проектирования макромодели меняются по соответствующим признакам на основе критерия адаптации. При любом типе декомпозиции объект и его модель расщепляются на отдельные фрагменты, объединенные посредством внешних связей.

Следовательно, наибольший эффект при проектировании РЭС можно получить при согласовании процессов эвристического синтеза в ЭС и адаптации формирования математической модели в процессе анализа и оптимизации. Такой подход, названный многоуровневым адаптивным схемотехническим проектированием, может быть использован при схемотехническом проектировании аналоговых и аналого-цифровых РЭС с высокой степенью интеграции (например, БИС и СБИС). Именно многоуровневое адаптивное проектирование позволяет осуществить сквозное схемотехническое проектирование в САПР для широкой номенклатуры РЭС.

Из специальной литературы известен исследовательский прототип системы сквозного схемотехнического проектирования РЭС, включающий блоки гибридной продукционной и объектно-ориентированной экспертных систем для синтеза структурных и принципиальных электрических схем, моделирования методами узловых потенциалов и переменных состояния, а также распределенной базы данных параметров электронных компонентов. Проведенное в ней конструктивное проектирование широкой номенклатуры РЭС показало справедливость рассмотренного подхода.

 

17.4. Информационные технологии схемотехнического моделирования аналого-цифровых устройств

 

Все современные продукты предполагают ввод проекта в редакторе принципиальных схем, после чего генерируется список соединений, необходимый для работы программы моделирования.

Мировым лидером в области автоматизации схемотехнического проектирования можно считать программу SPICE. Она была разработана в университете Беркли, США, в 1972 г. Различные версии этого алгоритма были в разное время заимствованы производителями программного обеспечения для использования в своих продуктах, и в настоящее время под этим названием известен ряд программ различных фирм. В силу применения единого вычислительного алгоритма программы различных производителей представляют собой по большому счету всего лишь графические оболочки, предоставляющие пользователю доступ к функциям программы SPICE, а также некоторые дополнительные возможности обработки полученных данных. Первая версия этой программы для персональных компьютеров PSpice создана в 1985 г. В типовой набор методов анализа входят статический, динамический и частотный виды анализа, смешанное логико-аналоговое моделирование (mixed-signal simulation), температурный (с индивидуальными значениями температуры по приборам) и шумовой анализы, расчет на наихудший случай и статистический по методу Монте-Карло, спектральный анализ, максимизация быстродействия (оптимизируется до 8 параметров). В логической части реализовано событийное моделирование, выявляются риски сбоя, рассчитываются зависимые от нагрузки задержки. Программа характеризуется богатым набором математических моделей компонентов, включая модели магнитных элементов с учетом насыщения и гистерезиса, длинных линий с учетом задержек, отражений, потерь и перекрестных помех, взаимодействия аналоговой и цифровой частей и др. Библиотека открыта для включения моделей пользователя, имеются соответствующие инструментальные средства пополнения библиотеки.

CircuitMaker 2000 (www.altium.com, www. circuit-maker.com) - простейшая система моделирования фирмы Microcode Engineering (ныне принадлежит компании Protel), в которой приняты модели компонентов стандарта SPICE.

Программа содержит обширную библиотеку моделей промышленных изделий электронных компонентов с возможностью оперативного просмотра их основных характеристик (например, для транзистора это тип корпуса, максимальное напряжение, ток, частота, фирма-изготовитель и др.).

Программа позволяет достаточно оперативно подготавливать электрические схемы аналоговых, цифровых или смешанных аналого-цифровых устройств и проводить их моделирование с получением результатов в виде осциллограмм сигналов и графиков частотных характеристик; возможно получение точных отсчетов с помощью вертикальных и горизонтальных визирных линий; позволяет контролировать режим по постоянному току в выбранных точках схемы. Отличительной особенностью программы является наличие анимационных компонентов (запуск ракеты, старт автомобилей), призванных имитировать конечный результат работы схемы, а также наличие учебного пособия в демонстрационном режиме. Она интегрируется с программой разработки печатных плат TraxMaker.

Electronics Workbench 5 (www.interactiv.com) - разработка фирмы Interactive Image Technologies. Позволяет моделировать аналоговые, простые цифровые и аналого-цифровые схемы электронных устройств, устройств автоматики, электромеханических устройств, а также схем, состоящих из функциональных блоков с заданными передаточными функциями. Имеется обширная библиотека моделей аналоговых и цифровых устройств, включая модели интегральных схем и полевых транзисторов. Есть возможность создавать и редактировать принципиальную схему, подключать измерительные приборы и выполнить указанные ниже виды анализа, возможность подключения в схему измерительных приборов, по внешнему виду и характеристикам приближающихся к промышленным образцам, является одной из отличительных особенностей программы. В качестве контрольно-измерительных приборов можно использовать мультиметр, осциллограф, измеритель АЧХ и ФЧХ, логический анализатор, логический преобразователь, генератор слов, функциональный генератор . Программа позволяет имитировать отказы компонентов в виде разрыва, короткого замыкания, наличия переходного сопротивления. Реализованы следующие виды анализа:

· DC-анализ (режимы работы по постоянному току);

· АС-анализ (АЧХ и ФЧХ);

· анализ переходных процессов;

· многовариантный анализ по постоянному току;

· Фурье-анализ и анализ спектра внутренних шумов;

· анализ нелинейных и интермодуляционных искажений;

· анализ при вариации параметров схемы и температуры;

· расчет нулей и полюсов передаточных функций;

· расчет относительной чувствительности характеристик схемы к изменению параметров выбранного элемента;

· расчет на наихудший случай;

· статистический анализ методом Монте-Карло.

Пользователю программы дается возможность настройки параметров анализа - выбор метода численного интегрирования; задание величин относительной и абсолютной погрешности вычислений; задание минимальной проводимости ветвей; изменение величины шага и числа итерации при статистическом анализе.

В конце 1998 г. программа Electronics Workbench 5.3 дополнена простейшей программой разработки печатных плат EWB Layout (Multiboard), причем интерфейс с другими известными САПР печатных плат не предусмотрен, и затем серией программ Multisim 2001, Ultiboard 2001, Ultiroute и Commsim 2001.

Первая из них позволяет осуществлять SPICE, VНDL, Verilog и смешанное моделирование, две другие программы выполняют размещение и трассировку соединений на платах, имеющих до 32 слоев.

Multisim 2001 поступает к заказчику с полной базой компонентов. Каждый из 16000 компонентов включает имитационную модель, схематический символ, электрические параметры и макет для разводки. Для программы создан информационный ресурс Интернета с более чем 12-ю миллионами компонентов (edaParts.com), дающий пользователям быстрый и простой доступ к центру конструирования (Design Center), наибольшей в мире базы данных по электронным компонентам. Программа имеет модуль для редактирования, импорта или создания новых компонентов.

Micro-Cap 7 / 8 (www.spectrum-soft.com) - разработка фирмы Spectrum Software. Предоставляет практически все виды анализа аналоговых и цифровых схем, а также:

средства синтеза пассивных и активных аналоговых фильтров;

интерфейс с программами разработки печатных плат OrCAD, P-CAD, Protel и др.;

режим анимации при анализе;

анализ S-параметров линейных 4-полюсников и круговые диаграммы (диаграммы Смита) для моделирования высокочастотных устройств;

редактор воздействий Stimulus Editor;

редактор компонентов Component Editor. Другие достоинства Micro-Cap:

исчерпывающая встроенная помощь;

возможность задания функциональных зависимостей параметров схемы (например, функций времени, токов ветвей и узловых потенциалов), причем эти возможности даже несколько шире, чем в OrCAD - в них можно сделать параметры пассивных компонентов зависящими только от токов или напряжений других ветвей схемы, в этих целях не нужно применять управляемые источники токов или напряжений;

многостраничный графический редактор принципиальных схем, поддерживающий иерархические структуры;

поведенческое моделирование аналоговых и цифровых компонентов, возможность описания цифровых компонентов с помощью логических выражений, что позволяет моделировать динамические системы, заданные не только принципиальными, но и функциональными схемами;

большая библиотека компонентов;

макромодели компонентов могут быть представлены в виде принципиальных электрических схем или в текстовом виде;

графики результатов выводятся в процессе моделирования или после его окончания по выбору пользователя, имеются сервисные возможности обработки графиков;

многовариантный анализ при вариации параметров и статистический анализ по методу Монте-Карло;

имеется специальная программа для расчета параметров математических моделей аналоговых компонентов по справочным или экспериментальным данным.

Программа Micro-Cap очень удобна для первоначального освоения схемотехнического моделирования электронных схем.

OrCAD 9.2 / 10 (www.orcad.com) - интегрированный программный комплекс для сквозного проектирования аналоговых, цифровых и смешанных аналого-цифровых устройств, синтеза устройств программируемой логики и аналоговых фильтров. Выпущен корпорацией Cadence Design Systems (бывшая DesignLab), в которую в 1999 г. влились прежние разработчики программы - компании MicroSim и OrCAD. Проектирование начинается с ввода принципиальной схемы, ее моделирования и оптимизации и заканчивается созданием управляющих файлов для программаторов, разработкой печатной платы и выводом управляющих файлов для фотоплоттеров и сверлильных станков. Основные модули системы:

OrCad Capture - управляющий модуль. При помощи этого модуля создаются принципиальные схемы проектов разного типа. При синтезе ПЛИС и моделировании цифровых устройств этот модуль работает с модулем OrCad Express. При моделировании аналоговых или аналого-цифровых устройств он работает с модулем PSPICE, при параметрической оптимизации - совместно с модулем PSPICE Optimizer, при разработке печатных плат - с модулем OrCad Layout;

OrCad Capture Cis (Component Information System) - модуль для создания принципиальных схем с поддержкой Internet. Зарегистрированный пользователь получает доступ к каталогу из 200 000 компонентов ведущих фирм-производителей;

OrCAD PSpise - модуль моделирования аналоговых и цифровых устройств. Позволяет рассчитывать режимы по постоянному току, чувствительность характеристик к вариации параметров компонентов, передаточные функции, частотные, фазовые и шумовые характеристики, переходные процессы, проводить спектральный анализ, статистические испытания по методу Монте-Карло, многовариантный анализ, параметрическую оптимизацию.

Protel DXP (www.protel.com) - интенсивно развивающаяся система сквозного проектирования аналоговых и цифровых электронных устройств фирмы Protel. Позволяет проводить все виды анализа из стандартного набора, предлагаемого любыми программами на базе ядра SPICE. По своим функциональным возможностям приближается к системе OrCAD. Позволяет выполнять проектирование аналоговых и аналого-цифровых устройств, в том числе задаваемых многостраничными принципиальными схемами иерархической структуры и схемами, содержащими самые современные ПЛИС, производить размещение (компоновку/трассировку) печатных плат с применением различных программ автотрассировки, проводить анализ целостности сигналов.

View Analog (www.innoveda.com) изначально был разработан компанией ViewLogic, а впоследствии вошел в состав пакета eProduct Designer компании Innoveda. Модуль имеет стандартный набор функций моделирования смешанных аналого-цифровых устройств на базе алгоритма SPICE, но он настолько тесно интегрируется с продуктами семейства Fusion, что позволяет моделировать поведение программируемой логической схемы, описанной на языках VHDL, Verilog, Abel, в окружении аналоговых компонентов.

Примером отечественных программ схемотехнического анализа могут служить версии программ ПА: версия ПА 7, в которой наряду с видами анализа, обычными для программ анализа электронных схем, реализовано моделирование механических, гидравлических, тепловых процессов, и последняя версия ПА 9, написанная на языке Java и ориентированная на использование в распределенных системах проектирования.

 

17.5. Синтез логических схем

 

Важной задачей проектирования является синтез логической схемы для последующей ее реализации на программируемых логических интегральных схемах (PLD, CPLD, FPGA). Как правило, в продуктах, предназначенных для этих целей, используется задание функционирования работы схемы, сделанное на одном из языков описания аппаратуры (HDL), например, VHDL или Verilog. Для простых устройств проект может быть задан в виде принципиальной схемы.

MAX+PLUS II (www.altera.com) фирмы Altera предлагает полный спектр возможностей логического дизайна: разнообразные средства описания проектов с иерархической структурой, мощный логический синтез, компиляцию с заданными временными параметрами, разделение на части, функциональное и временное тестирование (симуляцию), тестирование нескольких связанных устройств, анализ временных параметров системы, автоматическую локализацию ошибок, программирование и верификацию устройств.

Программа PeakFPGA (www.peakfpga.com) была изначально разработана компанией Accolade Design Automation, которая впоследствии вошла в состав Protel. Программа предназначена для построения проектов, описанных на языке VHDL, и упаковки их в конкретные микросхемы различных производителей.

Мощные средства моделирования и верификации позволяют производить быстрый поиск ошибок по различным критериям и отладку разрабатываемого устройства. Для описания проектов используется язык CUPL, позволяющий описывать логические схемы произвольной комбинацией трех методов: булевыми выражениями, таблицами истинности и методом конечных автоматов. Имеется возможность прорисовки отдельных частей проектов в редакторе принципиальных схем с использованием специальных библиотек. Синтезированное устройство упаковывается в конкретную микросхему, для программирования которой генерируется файл в JEDEC-формате.

Более мощным решением служит программа FPGA Studio, которую компания Cadence начала предлагать своим пользователям вместо программы OrCAD Express. Эта программа обеспечивает расширенные возможности синтеза и моделирования логических схем с последующей упаковкой их в микросхемы ведущих производителей. Она превосходит по функциональности продукты, предлагаемые компанией Protel, однако стоит при этом почти на порядок дороже.

Наиболее мощным решением в данной области является семейство продуктов Fusion компании Innoveda, входящее в состав интегрированного продукта eProduct Designer. Программа Fusion/SpeedWave позволяет работать на языке VHDL, Fusion/VSCi - на языке Verilog, ViewPLD - на языке ABEL, Fusion/ViewSim - на вентильном уровне. Все эти программы объединяются в единое целое под управлением модуля IntelliFlow, а в комбинации с упомянутым модулем ViewAnalog предлагают пользователям непревзойденные возможности по разработке сложных иерархических проектов, отдельные части которых используют различные технологии. Ближайшим конкурентом продуктов Innoveda является стоящий почти вдвое дороже пакет DSP Designer от Agilent Technologies (www.agi-lent.com).

Пакет SystemView компании Elanix (www.elanix.com) также позволяет моделировать логические схемы и упаковывать их в ПЛИС фирмы Хiliпх (www.xilinx.com). Однако уровень моделирования проекта тут принципиально другой - эта программа предназначена для моделирования систем на уровне структурных схем. Здесь применяются поведенческие модели, позволяющие оценить работоспособность проекта на вентильном, а не на схемотехническом уровне. К достоинствам пакета можно отнести наличие мощного модуля синтеза цифровых фильтров.

В нашей стране ЦИТП РАН реализован экспериментальный пакет СПЕКТР, который кроме традиционного расчета схем по постоянному току со SPICE-моделями позволяет осуществлять следующие виды расчета:

анализ устойчивости первым методом Ляпунова по расположению собственных частот на комплексной плоскости;

расчет чувствительности собственных частот к элементам схемы и расчет параметрического запаса устойчивости;

построение траекторий собственных частот при больших изменениях параметров элементов, а также температуры и питающих напряжений;

быстрый расчет частотных характеристик и S-параметров на основе резольвенты пучка;

расчет переходных и установившихся процессов в режиме малого сигнала разработанным численно-аналитическим методом.

Как показали численные эксперименты, переходные процессы на длительных интервалах времени рассчитываются с относительной погрешностью не более 10-12, причем такая точность не доступна никакому численному методу.

К перспективам развития пакета относятся расчет нулей и полюсов передаточных (схемных) функций и их параметрических чувствительнос-тей, разработка и реализация новых мощных методов оптимизации в частотной области, реализация численно-аналитического метода Ньютона-Канторовича-Михайлова для решения нелинейных сверхжестких дифференциально-алгебраических систем уравнений для анализа аналоговых схем в сугубо нелинейном режиме, разработка численно-аналитического метода решения дифференциальных систем с запаздывающим аргументом, которыми можно заменить системы уравнений в частных производных (телеграфные уравнения) для моделирования длинных линий и мик-рополосковых линий передач.

Широкое распространение в схемотехническом проектировании получили также следующие системы:

· система ЮАР (фирма Intusofi), которая отличается возможностью работы с измерительными устройствами;

· система Super-Compact и Micro ware Harmonica (фирма Compact Software), в которой предусмотрено моделирование СВЧ-уст-ройств;

· системы Serenade, Super-Spice, Microware Success, Microware Explorer (фирма Ansoft), обеспечивающие моделирование и оптимизацию СВЧ- и оптоэлектронных устройств, в том числе во временной области, систем радиофонии, электромагнитных полей и др. Имеются версии систем, ориентированные на Windows 95 (NT);

· системы Micro CAP, Micro LOG (фирмы Spectrum Software), предназначенные для анализа и моделирования аналоговых и аналого-цифровых устройств (расчет переходных процессов, частотных характеристик, спектральный анализ и др.), а также цифровых устройств на логической основе;

· система Or CAD фирмы Or CAD System Corp, позволяющая решать задачи схемотехнического и конструкторского проектирования. Следует заметить, что в 1998 г. корпорации Or CAD и MicroSim объединились - это облегчило интеграцию программных продуктов Or CAD и Design Lab.

Система обеспечивает ввод и вывод на печать принципиальных схем, трассировку печатных плат, создание спецификаций, разведение проводников, шин, моделирование цифровых устройств, проектирование ПЛИС и др. Библиотека систем содержит более 2700 изображений компонентов РЭС.

Система состоит из программных модулей:

· Or CAD Capture - графический редактор схем;

· Or CAD Capture CIS (Component Information System) - графический редактор схем со средствами ведения баз данных компонентов, при этом через Internet возможен доступ к каталогу компонентов (более 200 000 наименований);

· Or CAD Pspice Optimizer - параметрическая оптимизация и др. Версия Or CAD 9.2 функционирует на ПК (процессор Pentium, ОС Windows) с объемом ОЗУ не менее 32 Мб и 250 Мб дискового пространства.

Основным конкурентом системы Or CAD является пакет P-CAD (фирма Personal CAD System), который часто рассматривается как стандарт при выпуске конструкторской и технологической документации. Поэтому списки соединений принципиальных схем, созданных в Or CAD ранних версий, передавались в P-CAD для вывода схем на принтер или плоттер. Пакет имеет открытую архитектуру, он позволяет проектировать печатные платы, имеющие до 500 элементов и 2000 связей.

Широкое применение находит также пакет AutoCAD (фирма Auto Desk), который представляет собой систему автоматизированной разработки чертежей, рисунков, схем в интерактивном режиме. Важным достоинством пакета является возможность работы с трехмерной графикой, позволяющей строить реальные объекты (детали, дома, станки, одежду и др.), наблюдать их в различных ракурсах.

Рынок программных продуктов содержит большое число пакетов для решения разных задач моделирования. При разработке РЭС широкое применение находят следующие пакеты:

система Microware Office (фирма AWR) обеспечивает решение задач моделирования при проектировании высокочастотных интегральных и монолитных СВЧ-микросхем, антенн, СВЧ согласующих цепей и фильтров, усилителей, смесителей и др. Модули пакета написаны на языке C++ и позволяют интегрировать в себя новые методы моделирования;

система Genesys (фирма EAGLEWARE) обеспечивает высокоскоростное моделирование радиочастотных цепей и других элементов, по описанию моделирующего устройства позволяет синтезировать его топологию и представлять трехмерную анимационную картину распределения токов по проводникам. Пользовательский интерфейс системы полностью совпадает со стандартным интерфейсом ПО фирмы Microsoft.

К настоящему времени различными фирмами создано большое число программ автоматизированного проектирования в электронике (САПР-Э, или ECAD - Electronic Computer Aided Desing) ECAD, различающихся типами выполняемых проектных процедур и ориентацией на те или иные разновидности радиоэлектронных изделий. Динамичное развитие радиоэлектроники предъявляет все более жесткие требования к САПР по эффективности и разносторонности выполняемых функций. В результате процесс обновления состава программного обеспечения в САПР происходит весьма динамично.

К настоящему времени разработано большое количество пакетов прикладных программ САПР электрических и электронных средств. В качестве примеров можно привести ДИСП, САМРИС-2, СПАРС, АРОПС, КРОСС. Из зарубежных систем можно отметить пакеты Micro CAP, PSPICE, P-CAD, SPADE.

Значительное число этих пакетов ориентировано на автоматизацию проектирования печатных плат, цифровых и аналоговых интегральных схем, операционных усилителей, низкочастотных радиотехнических устройств.

Однако на данное время существует недостаточно пакетов программ проектирования радиочастотных, в том числе мощных, устройств, радиоэлектронных средств СВЧ, пакетов, посвященных комплексному построению и интеграции радиочастотных средств, включающих в себя как усилители, так и пассивные радиочастотные устройства, вплоть до антенн и СВЧ - устройств.

Развитие программного обеспечения САПР требует все более значительных затрат высококвалифицированного труда. Стоимость многих промышленных САПР составляет миллионы долларов. Поэтому актуальной становится разработка САПР второго порядка, или САПР САПРов. Пока таких систем еще не существует, но прогресс в этом направлении наблюдается. В отличие от традиционных САПР, в таких системах результат имеет нематериальный (информационный) характер. Различие результатов вызвано различными языками описания предметных областей: в одном случае - чертежи, схемы, устройства, а в другом - программа проектирования. Однако и в том, и в другом случае возможен единый системный методологический подход к проектированию: становится актуальным создание и развитие банка инженерных знаний, необходимых для проектирования.

 

17.6. Общая характеристика задач автоматизации конструкторского проектирования РЭС

 

Этап конструкторского проектирования радиоэлектронных средств представляет собой комплекс задач, связанных с преобразованием функциональных или принципиальных электрических схем разработанных устройств в совокупность конструктивных компонентов, между которыми будут существовать необходимые пространственные или электрические связи. Конструкторский этап является завершающим в общем цикле разработки радиоустройств и заканчивается выдачей конструкторско-технологической документации для их изготовления и эксплуатации.

При конструировании радиоэлектронных средств ведущим принципом является модульный, заключающийся в выделении конструктивных модулей (компонентов) различной степени сложности, находящихся в отношении соподчиненности.

Таким образом, конструкцию радиоэлектронного устройства можно представить в виде иерархической структуры, состоящей из компонентов разной степени сложности.

Согласно ГОСТ Р 52003-2003 принята такая иерархия РЭС:

1 уровень - разукрупнения радиоэлектронного средства; УР РЭС: уровень структуры внутренней организации радиоэлектронного средства и соотношение его элементов;

радиоэлектронное средство; РЭС: изделие и его составные части, в основу функционирования которых положены принципы радиотехники и электроники;

модульное исполнение радиоэлектронного средства;

МИ РЭС: метод создания радиоэлектронного средства на основе электронных модулей;

магистрально-модульное исполнение радиоэлектронного средства;

ММИ РЭС: конструктивно-технологический метод создания радиоэлектронного средства в модульном исполнении с использованием рациональной структуры соединения и коммутации его составных частей, обеспечивающий взаимозаменяемость радиоэлектронных средств и их составных частей, а также техническую совместимость в соответствии с заданными требованиями к их разработке.

Уровни разукрупнения радиоэлектронных средств по функциональной сложности:

радиоэлектронная система; РЭ система: радиоэлектронное средство, представляющее собой функционально законченную совокупность радиоэлектронных комплексов и устройств, обладающее свойством перестроения своей структуры для рационального решения тактических и/или технических задач при изменении условий эксплуатации;

Примечания

Радиоэлектронная система является высшим уровнем разукрупнения радиоэлектронного средства.

В состав радиоэлектронной системы могут входить механические, электромеханические и другие средства, без которых невозможна эксплуатация этой радиоэлектронной системы.

В зависимости от сложности решаемых задач радиоэлектронная система может быть автономной частью другой радиоэлектронной системы или совокупности систем.

радиоэлектронный комплекс; РЭК: радиоэлектронное средство, представляющее собой функционально законченную совокупность радиоэлектронных устройств, которые не соединены на предприятии-изготовителе сборочными операциями, выполненное с использованием интерфейсов и обладающее свойством перестроения своей структуры для сохранения работоспособности при решении тактических и/или технических задач в различных условиях эксплуатации;

радиоэлектронное устройство; РЭУ: радиоэлектронное средство, представляющее собой совокупность функционально и конструктивно законченных сборочных единиц и используемое для решения технической задачи в соответствии с его назначением;

Примечания.

В зависимости от сложности технической задачи радиоэлектронное устройство может быть составной частью другого радиоэлектронного устройства.

В состав радиоэлектронного устройства могут входить механические, гидравлические, электромеханические и другие устройства, без которых невозможна эксплуатация этого радиоэлектронного устройства.

Радиоэлектронное устройство реализует функции передачи, приема и преобразования информации.

радиоэлектронный функциональный узел; РЭФУ: радиоэлектронное средство, представляющее собой функционально и конструктивно законченную сборочную единицу, выполняющее радиотехническую и/или электронные функции (функцию) и не имеющее самостоятельного применения.

Уровни разукрупнения радиоэлектронных средств в немодульном исполнении по конструктивной сложности:

шкаф (ГЭС): радиоэлектронное устройство, представляющее собой совокупность входящих в него электронных устройств и устройств, без которых невозможна его эксплуатация, выполненное на основе несущей конструкции третьего уровня;

блок (РЭС): радиоэлектронное устройство или радиоэлектронный функциональный узел, выполненное (выполненный) на основе несущей конструкции первого или второго уровня;

ячейка (РЭС): радиоэлектронное устройство или радиоэлектронный функциональный узел, выполненное (выполненный) на основе несущей конструкции первого уровня.

Уровни разукрупнения радиоэлектронных средств в модульном исполнении по конструктивной сложности:

электронный модуль; ЭМ: конструктивно и функционально законченное радиоэлектронное устройство или радиоэлектронный функциональный узел, выполненное (выполненный) в модульном или магистрально-модульном исполнении с обеспечением конструктивной, электрической, информационной совместимости и взаимозаменяемости;

унифицированный электронный модуль; УЭМ: электронный модуль, соответствующий заданным требованиям для нескольких радиоэлектронных средств;

стандартный электронный модуль; СЭМ: электронный модуль, широко применяемый в различных радиоэлектронных средствах, соответствующий наиболее высоким требованиям по внешним воздействующим факторам, установленным стандартом;

специализированный стандартный электронный модуль; ССЭМ: стандартный электронный модуль, доработанный для выполнения определенного набора функций для конкретного изделия в целях тесного взаимодействия заказчика, разработчика, изготовителя и потребителя на всех стадиях жизненного цикла этого модуля и радиоэлектронных средств на его основе;

электронный модуль третьего уровня; ЭМ 3: электронный модуль, выполненный на основе базовой несущей конструкции третьего уровня радиоэлектронного средства;

электронный модуль второго уровня; ЭМ 2: электронный модуль, выполненный на основе базовой несущей конструкции второго уровня радиоэлектронного средства;

электронный модуль первого уровня; ЭМ 1: электронный модуль, выполненный на основе базовой несущей конструкции первого уровня радиоэлектронного средства;

электронный модуль нулевого уровня; ЭМ 0: электронный модуль, выполненный на основе изделий электронной техники и электротехнических изделий, размерно координируемый с базовой несущей конструкцией первого уровня радиоэлектронного средства.

Метод модульного конструирования обладает рядом неоспоримых достоинств, одним из которых является упрощение алгоритмической реализации методов решения конструкторских задач на различных уровнях разработки радиоаппаратуры. Вместе с тем применение этого метода возможно лишь при решении проблемы конструктивной и схемной унификации модулей различного уровня, возможность которой определяется достигнутым уровнем технологии.

При выполнении этого условия можно выделить ряд стандартных задач конструкторского этапа проектирования, которые приходится решать на различных уровнях. Очевидно, что на содержание этих этапов накладывает специфические особенности вид проектируемой аппаратуры.

Так, если говорить о микроэлектронных устройствах, составляющих 70% всех радиоустройств, то к этим задачам следует отнести задачи:

· компоновки модулей;

· размещения модулей низшего уровня в модуле высшего;

· трассировки межсоединений;

· получения конструкторско-технологической документации.

Эти задачи обладают рядом особенностей по сравнению с задачами других этапов проектирования радиоустройств, например схемотехнического.

 

Список сокращений:

ПрУ -

 

 

Список основной литературы

 

 1. Павлов, В. Н. Схемотехника аналоговых электронных устройств : учеб. пособие / В. Н. Павлов. - Москва : Академия, 2008. - 287 с.

2.Титце, У. Полупроводниковая схемотехника : В 2 т. / У. Титце, К. Шенк ; [пер. с нем. Г. С. Карабашева], Т. 1 . - М. : Додэка-XXI, 2008. - 832 с.                   

 3.Титце, У. Полупроводниковая схемотехника : в 2 т. / У. Титце, К. Шенк ; [пер. с нем. Г. С. Карабашева], Т. 2 . - М. : Додэка-XXI, 2008. - 942 с.

 4. Бух, М. А. Микроэлектроника : настоящее и будущее : учеб. пособие / М. А. Бух., Л. П. Зайцева . - 3-е изд., испр. и доп. - М.: Высшая школа, 2008. - 262 с.

Список дополнительной литературы

 

1. А.Г. Морозов. Электротехника, электроника и импульсная техника. – М.: Высшая школа, 1987.

2. А.Г, Алексенко, И.И. Шагурин. Микросхемотехника. – М.: Радио и связь, 1990.

3. Д.В. Игумнов, Г.В. Королев, И.С. Громов. Основы микроэлектроники. – М.: Высшая школа, 1991.

4. Ю.Ф. Опадчий, О.П. Глудкин, А.И. Гуров. Аналоговая и цифровая электроника. – М.: Горячая линия – Телеком, 2003.

5. Степаненко И.П. Основы микроэлектроники: Учебное пособие для вузов. – 2-е изд., перераб. и доп.- М.: Лаборатория Базовых Знаний, 2001.

6. Ю.Л. Бобровский, С.А. Корнилов, И.А. Кратиров и др.; Под ред. проф. Н.Ф. Федорова. Электронные, квантовые приборы и микроэлектроника: Учебное пособие для вузов.- М.: Радио и связь, 2002.

    7. Основы электроники: Учебное пособие / Х.К. Арипов, А.М. Абдуллаев, Н.Б. Алимова; – Ташкент: ИПТД им. Чулпана, 2007. – 136 с.

8. Корис, Р. Справочник инженера-схемотехника / Р. Корис, Х. Шмидт-Вальтер ; пер. с англ. Ю. А. Заболотной ; под ред. Е. Л. Свинцова. - М. : Техносфера, 2008. - 608 с.

9. Ратхор Т. С.Цифровые измерения. Методы и схемотехника: [учебник]/ Т. С. Ратхор; пер. с англ. Ю. А. Заболотной. - М.:ТЕХНОСФЕРА,2004. - 376 с. (Мир электроники). - Библиогр.: в тексте. - Предм. указ.: с. 371                                               

10.Схемотехника электронных систем: Аналоговые и импульсные устройства / [Бойко В. И. и др.]. - СПб. : БХВ-Петербург, 2004. - 482 с. : ил. - Библиогр.: с. 475-478. - Предм. указ.: с. 479-482. - ISBN 5-94157-434-7                                   

11.Схемотехника устройств на мощных полевых транзисторах: справочник / под ред. В. П. Дьяконова. - М.: Радио и связь, 1994. - 280 с. - Библиогр.: с.268.                                                                       

 

Интернет-ресурсы:

 

1. http://mic-ron.ru/knigi/740.html - Сайт с подборкой журналов «Схемотехника»;

2. http://www.tnu.in.ua/study/downloads - Сайт с учебными материалами по схемотехнике.

 

 

Дата: 2019-02-19, просмотров: 334.