Методы, основанные на принципах механического разделения микроорганизмов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Рассев шпателем по Дригальскому

Берут 3 чашки Петри с питательной средой. На первую чашку петлей или пи­петкой наносят каплю исследуемого материала и растирают шпателем по всей по­верхности агара. Затем шпатель переносят во вторую чашку и втирают оставшуюся на шпателе культуру в поверхность питательной среды. Далее шпатель переносят в третью чашку Петри и аналогичным образом производят посев. На первой чашке вырастает максимальное количество колоний (сплошной pocт) на третьей - мини­мальное в виде отдельно расположенных колоний.

Метод истощающего штриха

В целях экономии сред и посуды можно пользоваться одной чашкой, разделив её на 4 сектора и последовательно засеяв штрихом. Для этого материал берут пет­лёй и проводят ею на расстоянии 5 мм друг от друга ряд параллельных штрихов сна­чала по поверхности первого сектора, а затем последовательно оставшимися на пет­ле клетками засевают все другие секторы. При каждом последующем штрихе про­исходит уменьшение количества засеваемых клеток. После рассева чашки перевора­чивают вверх дном, чтобы конденсационная вода, образовавшаяся на крышке чашки Петри, не мешала получить изолированные колонии. Чашки выдерживают в термостате 1-7 суток, так как скорость роста различных микроорга­низмов неодинакова.

Таким образом, в первых секторах получается сплошной рост, а вдоль после­дующих штрихов вырастают обособленные колонии, представляющие собой потом­ство одной клетки.

Метод прогревания

Позволяет отделить спорообразующие бациллы от неспоровых форм. Прогре­вают исследуемый материал на водяной бане при 80°С 10-15 минут. При этом поги­бают вегетативные формы, а споры сохраняются и при посеве на соответствующую питательную среду прорастают, образуя колонии только спорообразующих бакте­рий.

Метод обогащения

Исследуемый материал засевают на элективные питательные среды, способст­вующие росту определенного вида микроорганизмов.

Метод заражения лабораторных животных

Этот метод используется для выделения чистой культуры из патологического материала, загрязненного посторонней микрофлорой, или в том случае, когда в исследуемом материале очень мало патогенных микроорганизмов.

Для за­ражения подбирают наиболее восприимчивые к предполагаемому возбудителю ин­фекции виды животных. Например, для выделения пневмококка из мокроты зара­жают белую мышь. Это животное весьма чувствительно к данному микробу и резистентно к другим микробам, находящихся в мокроте. В связи с этим пневмококк быстро размножается в организме мыши, а другие микробы погибают. Через 18-20 часов после заражения мышь забивают и кровь, взятую из сердца, засевают на питательную среду. Так как в крови содержится один пневмококк, то на питатель­ной среде вырастает чистая культура.

Методы, основанные на биологических свойствах микроорганизмов

Биологические методы выделения чистых культур основаны на учете того или иного свойства выделяемого микроба, отличающего его от других, находящихся с ним в смеси.

Метод Шукевича

Применяется для выделения подвижных микроорганизмов. Исследуемый ма­териал засевают в конденсационную воду скошенного агара, находящегося в про­бирке. При размножении подвижные формы микробов из конденсационной воды распространяются по агару, как бы "вползают" на его поверхность. Из верхней час­ти роста производят высев в конденсационную воду свежей питательной среды. Производя таким образом несколько пересевов, в конце концов получают чистую культуру подвижной бактерии.

Метод ингибирования

Основан на различном действии некоторых химических веществ и антибиоти­ков на микроорганизмы. Определённые вещества угнетают рост одних микроорга­низмов и не оказывают влияния на другие. Например, небольшие концентрации пенициллина задерживают рост грамположительных микроорганизмов и не влияют на грамотрицательные.

Первый этап выделения чистой культуры

1. Из исследуемого материала готовят мазок, окрашивают по Граму и микроскопируют.

2. Производят посев на чашки Петри с питательным агаром. Для этого исследуемый материал, в случае необходимости, разводят стерильным физиологическим раствором. Одну каплю приготовленного разведения наносят петлей на поверхность питательной среды в чашке Петри и тщательно втирают шпателем в среду, равномерно распределяя материал по всей ее поверхности. После посева чашку переворачивают дном кверху, подписывают и помещяют в термостат при 37ºС на 18-24 ч.

3. Производят посев на элективную питательную среду.

4. Производят посев на дифференциально-диагностическую среду.

5. Заражают лабораторных животных исследуемым материалом.

 16.Ферменты бактерий. Идентификация бактерий по ферментативной активности.

В основе всех метаболических реакций в бактериальной клетке лежит деятельность ферментов, которые принадлежат к 6 классам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Ферменты, образуемые бактериальной клеткой, могут локализоваться как внутри клетки —эндоферменты, так и выделяться в окружающую среду —экзоферменты. Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь источниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепляют крупные молекулы пептидов, полисахаридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализованы в периплазматическом пространстве бактериальной клетки. Они участвуют в процессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых случаях — для видов. Поэтому определением спектра ферментативной активности пользуются при установлении таксономического положения бактерий. Наличие экзоферментов можно определить при помощи дифференциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.

Идентификация бактерий по ферментативной активности.

Наиболее часто определяют ферменты класса гидролаз и оксидоредуктаз, используя специальные методы и среды.

Для определения протеолитической активностимикроорганизмы засевают в столбик желатина уколом. Через 3—5 дней посевы просматривают и отмечают характер разжижения желатина. При разложении белка некоторыми бактериями могут выделяться специфические продукты — индол, сероводород, аммиак. Для их определения служат специальные индикаторные бумажки, которые помещают между горлышком и ватной пробкой в пробирку с МПБ или (и) пептонной водой, засеянными изучаемыми микроорганизмами. Индол (продукт разложения триптофана) окрашивает в розовый цвет полоску бумаги, пропитанной насыщенным раствором щавелевой кислоты. Бумага, пропитанная раствором ацетата свинца, в присутствии сероводорода чернеет.Для определения аммиакаиспользуют красную лакмусовую бумажку.

Для многих микроорганизмов таксономическим признаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продуктов. Для выявления этого используют среды Гисса, содержащие различные углеводы (глюкозу, сахарозу, мальтозу, лактозу и др.).Для обнаружения кислотв среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2—6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом».

Для обнаружения газообразованияв жидкие среды опускают поплавки или исполь­зуют полужидкие среды с 0,5% агара.

Для того чтобы определить интенсивное кислотообразование, характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный — при более низких значениях рН.

Гидролиз мочевиныопределяют по выделению аммиака (лакмусовая бумажка) и подщелачиванию среды.

При идентификации многих микроорганизмов используют реакцию Фогеса — Проскауэра на ацетоин— промежуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свидетельствует о наличии бутандиолового брожения.

Обнаружить каталазуможно по пузырькам кислорода, которые начинают выделяться сразу же после смешивания микробных клеток с 1 % раствором перекиси водорода.

Для определения цитохромоксидазыприменяют реактивы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный раствор N-диметил-р-фенилендиамина дигидрохлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появляющемуся через 2—5 мин.

Для определения нитритовиспользуют реактив Грисса: появление красного окрашивания свидетельствует о наличии нитритов

 17. Действие физических и химических факторов на микроорганизмы.  Понятие о стерилизации, дезинфекции, асептике и антисептике.   Способы стерилизации, аппаратура.

Влияние физических факторов.

Влияние температуры. Различные группы микроорганизмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при высокой — термофилами.

К психрофильным микроорганизмамотносится большая группа сапрофитов — обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, светящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бактерии (возбудитель псевдотуберкулеза размножается при температуре 4 °С). В зависимости от температуры культивирования свойства бактерий меняются. Интервал температур, при котором возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум — от 15 до 40 °С, приближаясь к температурному оптимуму мезофильных бактерий.

Мезофилывключают основную группу патогенных и условно-патогенных бактерий. Они растут в диапазоне температур 10— 47 °С; оптимум роста для большинства из них 37 °С.

При более высоких температурах (от 40 до 90 °С) развиваются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при температуре 250—300 °С и давлении 262 атм.

Термофилыобитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компостом. Поскольку навоз наиболее богат термофилами, их рассматривают как показатель загрязненности почвы.

Хорошо выдерживают микроорганизмы действие низких температур. Поэтому их можно долго хранить в замороженном состоянии, в том числе при температуре жидкого газа (—173 °С).

Высушивание. Обезвоживание вызывает нарушение функций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гонореи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.

Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособности, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты длительно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

Действие излучения. Неионизирующее излучение — ультрафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных веществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предметов в больницах, родильных домах, микробиологических лабораториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200—450 нм.

Ионизирующее излучение применяют для стерилизации одноразовой пластиковой микробиологической посуды, питательных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию ионизирующих излучений, например Micrococcus radiodurans была выделена из ядерного реактора.

Действие химических веществ. Химические вещества могут оказывать различное действие на микроорганизмы: служить источниками питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфицирующими. Антимикробные химические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.

Химические вещества, используемые для дезинфекции, относятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.

Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли).

Стерилизация– предполагает полную инактивацию микробов в объектах, подвергшихся обработке.

Дезинфекция — процедура, предусматривающая обработку загрязненного микробами предмета с целью их уничтожения до такой степени, чтобы они не смогли вызвать инфекцию при использовании данного предмета. Как правило, при дезинфекции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.

Асептика– комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.

Антисептика– совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

Дата: 2019-02-19, просмотров: 287.