Возможность задания различных нейральных подтипов в пробирке имеет очевидные клинические и экспериментальные пути развития для нервной де- и регенерации. DA-нейроны были одними из первых нейронов подтипа, непосредственно индуцированной из мыши, так и фибробластов человека в 2011 году (Caiazzo et al. 2011; Pfisterer et al. 2011). В обоих исследованиях активно наблюдаются пики, TH-положительные, индуцированные дофаминергические нейроны (IDA нейронные клетки) были охарактеризованы, хотя пулы различных факторов были использованы для достижения этих результатов, и только клетки, индуцированные экспрессией Ascl1, Nurr1, и Lmx1a продемонстрировали высвобождение допамина (Caiazzo et al. 2011). Появление этих факторов привело к IDA нервных клеток, полученных из двух здоровых пациентов и пациентов с PD. Такой подход имеет далеко идущие последствия для Паркинсона, связанного с дегенерацией нейронов DA, так как эти перепрограммированные клетки предположительно могут быть использованы для замены тех, которые были потеряны.
Альтернативные усилия стремились перепросматривать специфическую среднемозговую идентичность DA-нейронов, потерянных в PD, с выводами, что еще один пул факторов способен вызывать дофаминергические нервные клетки. Тем не менее, панель DA и пан-нейральных генов показали уровни экспрессии в клетках IDA, не оправдали ожиданий по сравнению с найденными в эмбриональных или взрослых среднемозговых нейронах DA, хотя эти клетки IDA способны частично восстанавливать функции дофамина при трансплантации в мышей с PD (Kim et al. 2011).
Помимо возможности вывести нейронные клетки DA с помощью стратегий перепрограммирования, с соответствующими последствиями для PD, усилия также сосредоточены на расстройствах, влияющих на спинальные двигательные нейроны, такие как ALS (болезнь Лу Герига) или SMA. Недавние исследования показали, что моторные нейроны могут быть непосредственно индуцированны из фибробластов [Индуцированные двигательных нейронов (iMN) клеток], используя принудительную экспрессию пула факторов транскрипции, который включал вышеупомянутый BAM коктейль факторов транскрипции наряду с моторными нейронами специфических факторов (Son et al 2011). Подобно эмбриональным и ESC-полученных двигательных нейронов, эти клетки iMN были избирательно чувствительны к токсичности, вызванной мутантными глиальными клетками от модели мыши БАС в совместной культуре, демонстрируя свою полезность как в качестве фенокопии моторных нейронов при болезнях, таких как SMA или ALS, а также для изучения вклада клеточных автономных в дегенерацию (Di Giorgio et al. 2007; Nagai et al. 2007). Знаковые проверки и подтверждение принципа действия исследования, несомненно, вдохновит исследователей и клиницистов, поскольку они стремятся развивать нейронные регенерационные стратегии для широкого спектра дегенеративных расстройств.
5.5 Будущие последствия и вопросы о перепрограммировании в отношении регенерации
The many studies discussed in this chapter made significant discoveries that markedly changed, and will continue to shape, our current understanding of regeneration. As the field of reprogramming has exploded in the last decades, an increasingly apparent need for standardization exists. Currently variations in induction methods, nomenclature, efficiency calculations, quantification methods for the extent of reprogramming, and the methods used to demonstrate functionality of derived cells currently make direct comparisons difficult. Marius Wernig’s group, who was first to develop direct reprogramming for iN cells in 2010, recently proposed a panel of criteria to be used to define iN cells with various degrees of reprogramming (Yang et al. 2011). The increasingly stringent criteria are also roughly the order of appearance of aforementioned neuronal properties in both reprogrammed iN cells and neurons during development. Broadly, they include the stepwise appearance of neuronal traits from (1) common morphological features, to (2) unique membrane characteristics, and finally (3) output function. For instance, a characteristic neuronal morphology is the first measureable changed observed, using the specific criteria of complex dendritic arborization, while synaptic plasticity, as demonstrated by short-term facilitation/depression, is the final property to appear. Between these two endpoints exist iN cells with varying degrees of reprogramming, and the authors have offered quantifiable criteria to define the extent of this reprogramming. They also point out the subtle conceptual difference between ‘‘partially reprogrammed iN cells’’ and ‘‘immature iN cells,’’ though until mechanisms underlying this process are further elucidated, distinguishing between the two is difficult.
Furthermore, issues of safety and efficiency continue to be a concern. As discussed previously, many recent studies have developed tools aimed at avoiding/ removing genome integration events caused by the retro- or lentiviral delivery of genes. This field is advancing rapidly and the affordability of these technologies will continue to increase, as will their efficiencies. The current four-factor lentiviral induction method used for the human system only had an overall efficiency of 2–4 % (Pang et al. 2011), 10-fold lower than the three-factor system used for mouse (Vierbuchen et al. 2010), though direct somatic cell reprogramming methods have generally so far seen higher conversion efficiencies than those observed in iPSC line establishment. As methods are optimized and new genes and compounds are tested, these numbers are expected to only further increase.
As methods for both indirect and direct reprogramming continue to improve, and the mechanisms for each are further delineated, many differences between the two may shrink in significance. However, one major difference between indirect and direct reprogramming is the lack of required cell proliferation in direct reprogramming. This absence could prove to be a detriment for regenerative applications of direct reprogramming, as large numbers of cells are required for transplantation in cellular replacement strategies, and the ability of reprogrammed cells to proliferate in vitro may prove beneficial, or even necessary. As direct reprogramming is currently a much less arduous process than that used to first establish iPSCs and then redifferentiate them, efforts have also focused on directly reprogramming somatic cells into lineage-specific stem cells, such as neural stem cells, in one step. It was indeed demonstrated that functional, bipotent, induced neural progenitor cells (iNPCs) could be derived from mouse fibroblasts by first inducing the overexpression of a set of the pluripotency factors used to establish iPSCs (Oct4, Kl4, Sox2, and c-myc) for 3–6 days, and then allowing the cells to expand in neural reprogramming media supplemented with FGF2, EGF, and FGF4 to support NPCs (Kim et al. 2011a). These iNPCs spontaneously differentiated into multiple neuronal cell types, as well as astrocytes, demonstrating at least a bipotent progenitor. Although these cells did not expand well in culture, they represent another possible unique application of reprogramming for regenerative purposes. As the field of reprogramming is a relatively young one, the current explosion in publications on this topic will continue to deepen our understanding of this dynamic and responsive process. The applicability of those discoveries, to neural regeneration and other biological processes, seems only limited by our imaginations.
Ссылочная литература
Akerud P, Canals JM, Snyder EY, Arenas E (2001) Neuroprotection through delivery of glial cell
line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease.
J Neurosci 21:8108–8118
Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct
reprogramming of adult human fibroblasts to functional neurons under defined conditions.
Cell Stem Cell 9:113–118
Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP (2003) Age-related macular
degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293
Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ,
Epstein JA et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and
human somatic cells to pluripotency. Cell Stem Cell 8:376–388
Armstrong RJ, Tyers P, Jain M, Richards A, Dunnett SB, Rosser AE, Barker RA (2003)
Transplantation of expanded neural precursor cells from the developing pig ventral
mesencephalon in a rat model of Parkinson’s disease. Exp Brain Res 151:204–217
Bahr M, Bonhoeffer F (1994) Perspectives on axonal regeneration in the mammalian CNS.
Trends Neurosci 17:473–479
Bailey SB, Eichler ME, Villadiego A, Rich KM (1993) The influence of fibronectin and laminin
during Schwann cell migration and peripheral nerve regeneration through silicon chambers.
J Neurocytol 22:176–184
Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI (1988) Human skin
fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A
85:5112–5116
Behrstock S, Ebert A, McHugh J, Vosberg S, Moore J, Schneider B, Capowski E, Hei D,
Kordower J, Aebischer P et al (2006) Human neural progenitors deliver glial cell line-derived
neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 13:379–388
Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004)
Transplantation of human embryonic stem cell-derived neural progenitors improves
behavioral deficit in Parkinsonian rats. Stem Cells 22:1246–1255
Bharti K, Miller SS, Arnheiter H (2011) The new paradigm: retinal pigment epithelium cells
generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res
24:21–34
Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their
nonneuronal neighbors. Neuron 52:39–59
Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol
32:375–413
Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated
Frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO
(2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem
cells. Stem Cells 27:2427–2434
Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD,
Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional
dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227
Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a
cultured cell line. Nature 380:64–66
Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A,
Semo M, Smart MJ et al (2009) Protective effects of human iPS-derived retinal pigment
epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4:e8152
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly
efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling.
Nat Biotechnol 27:275–280
Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH et al
(2008) Highly efficient and large-scale generation of functional dopamine neurons from
human embryonic stem cells. Proc Natl Acad Sci U S A 105:3392–3397
Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM
(2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications
for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150
Cooper O, Hargus G, Deleidi M, Blak A, Osborn T, Marlow E, Lee K, Levy A, Perez-Torres E,
Yow A et al (2010) Differentiation of human ES and Parkinson’s disease iPS cells into ventral
midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific
regionalization by retinoic acid. Mol Cell Neurosci 45:258–266
Craveiro LM, Hakkoum D, Weinmann O, Montani L, Stoppini L, Schwab ME (2008)
Neutralization of the membrane protein Nogo-A enhances growth and reactive sprouting in
established organotypic hippocampal slice cultures. Eur J Neurosci 28:1808–1824
Cronin S, Hardiman O, Traynor BJ (2007) Ethnic variation in the incidence of ALS: a systematic
review. Neurology 68:1002–1007
Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127
Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult
axons in white matter tracts of the central nervous system. Nature 390:680–683
Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in
degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822
Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts
fibroblasts to myoblasts. Cell 51:987–1000
Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and
apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43:3312–3318
Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect
of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci
10:608–614
Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier
G, Leibel R, Goland R et al (2008) Induced pluripotent stem cells generated from patients
with ALS can be differentiated into motor neurons. Science 321:1218–1221
Dowling JE (1970) Organization of vertebrate retinas. Invest Ophthalmol 9:655–680
Dowling JE, Werblin FS (1971) Synaptic organization of the vertebrate retina. Vis Res Suppl
3:1–15
Du H, Lim SL, Grob S, Zhang K (2011) Induced pluripotent stem cell therapies for geographic
atrophy of age-related macular degeneration. Semin Ophthalmol 26:216–224
Ebert AD, Svendsen CN (2010) Stem cell model of spinal muscular atrophy. Arch Neurol
67:665–669
Ebert AD, Beres AJ, Barber AE, Svendsen CN (2008) Human neural progenitor cells overexpressing
IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s
disease. Exp Neurol 209:213–223
Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced
pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280
Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T,
Okita K, Asaka et al (2012) Drug screening for ALS using patient-specific induced pluripotent
stem cells. Sci Transl Med 4 145ra104
Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse
embryos. Nature 292:154–156
Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma
23:371–383
Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull
49:377–391
Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver
S, Trojanowski JQ et al (2001) Transplantation of embryonic dopamine neurons for severe
Parkinson’s disease. N Engl J Med 344:710–719
Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve
regeneration. Microsurgery 18:397–405
Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration–
emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471
Gouras P, Algvere P (1996) Retinal cell transplantation in the macula: new techniques. Vis Res
36:4121–4125
Grandpre T, Strittmatter SM (2001) Nogo: a molecular determinant of axonal growth and
regeneration. Neuroscientist 7:377–386
Gurdon JB, Uehlinger V (1966) ‘‘Fertile’’ intestine nuclei. Nature 210:1240–1241
Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from
the transplantation of single somatic nuclei. Nature 182:64–65
Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An
integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at
the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog
Retin Eye Res 20:705–732
Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D,
Hallett PJ et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells
grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl
Acad Sci U S A 107:15921–15926
Harrower TP, Tyers P, Hooks Y, Barker RA (2006) Long-term survival and integration of porcine
expanded neural precursor cell grafts in a rat model of Parkinson’s disease. Exp Neurol
197:56–69
Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured
spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord
injury. Neurosurg Focus 25:E14
Hefferan MP, Galik J, Kakinohana O, Sekerkova G, Santucci C, Marsala S, Navarro R, Hruska-
Plochan M, Johe K, Feldman E et al (2012) Human neural stem cell replacement therapy for
amyotrophic lateral sclerosis by spinal transplantation. PLoS ONE 7:e42614
Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M
(2009) Generation of retinal cells from mouse and human induced pluripotent stem cells.
Neurosci Lett 458:126–131
Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature
407:963–970
Horner PJ, Gage FH (2002) Regeneration in the adult and aging brain. Arch Neurol
59:1717–1720
Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem
cells. Nat Protoc 4:1295–1304
Hu BY, Du ZW, Zhang SC (2009) Differentiation of human oligodendrocytes from pluripotent
stem cells. Nat Protoc 4:1614–1622
Huang S (2009) Reprogramming cell fates: reconciling rarity with robustness. BioEssays
31:546–560
Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L (2011) Induction of functional
hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475:386–389
Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous
systems. Results Probl Cell Differ 48:339–351
Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H,
Smith Y, Wiser O, Gropp M et al (2009) Directed differentiation of human embryonic stem
cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408
Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010)
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell
142:375–386
Jordan PM, Ojeda LD, Thonhoff JR, Gao J, Boehning D, Yu Y, Wu P (2009) Generation of spinal
motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast
growth factor. J Neurosci Res 87:318–332
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of
pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775
Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011a)
Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A
108:7838–7843
Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung CY, Dawlaty
MM, Tsai LH et al (2011b) Functional integration of dopaminergic neurons directly converted
from mouse fibroblasts. Cell Stem Cell 9:413–419
Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen
CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum
Gene Ther 16:509–521
Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived
retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized
vascular endothelial growth factor secretion, and gene expression pattern similar to native
RPE. Stem Cells 29:825–835
Kolb H, Nelson R, Ahnelt P, Cuenca N (2001) Cellular organization of the vertebrate retina. Prog
Brain Res 131:3–26
Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G,
Antonacci C, Buch A et al (2011) Dopamine neurons derived from human ES cells efficiently
engraft in animal models of Parkinson’s disease. Nature 480:547–551
Laabs T, Carulli D, Geller HM, Fawcett JW (2005) Chondroitin sulfate proteoglycans in neural
development and regeneration. Curr Opin Neurobiol 15:116–120
Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells
from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774
Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification
and transplantation of photoreceptors derived from human induced pluripotent stem cells.
PLoS ONE 5:e8763
Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V,
Studer L (2007) Directed differentiation and transplantation of human embryonic stem cellderived
motoneurons. Stem Cells 25:1931–1939
Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C,
Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular
atrophy-determining gene. Cell 80:155–165
Lepore AC, O’Donnell J, Kim AS, Williams T, Tuteja A, Rao MS, Kelley LL, Campanelli JT,
Maragakis NJ (2011) Human glial-restricted progenitor transplantation into cervical spinal
cord of the SOD1 mouse model of ALS. PLoS ONE 6:e25968
Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005)
Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221
Lindvall O, Bjorklund A (2011) Cell therapeutics in Parkinson’s disease. Neurotherapeutics
8:539–548
Lindvall O, Barker RA, Brustle O, Isacson O, Svendsen CN (2012) Clinical translation of stem
cells in neurodegenerative disorders. Cell Stem Cell 10:151–155
Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene
regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A
96:6307–6311
Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term
safety and function of RPE from human embryonic stem cells in preclinical models of
macular degeneration. Stem Cells 27:2126–2135
Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N,
Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in
dystrophic RCS rats. Cloning Stem Cells 8:189–199
Marro S, Pang ZP, Yang N, Tsai MC, Qu K, Chang HY, Sudhof TC, Wernig M (2011) Direct
lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem
Cell 9:374–382
McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and
cell fusion. Science 220:1300–1302
Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M (2012) Efficient stage specific
differentiation of human pluripotent stem cells towards retinal photoreceptor cells. Stem Cells
30:673–686.
Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm
DM (2009) Modeling early retinal development with human embryonic and induced
pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703
Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin
JM, Tian S, Stewart R et al (2011) Optic vesicle-like structures derived from human
pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells
29:1206–1218
Montani L, Gerrits B, Gehrig P, Kempf A, Dimou L, Wollscheid B, Schwab ME (2009) Neuronal
Nogo-A modulates growth cone motility via Rho-GTP/LIMK1/cofilin in the unlesioned adult
nervous system. J Biol Chem 284:10793–10807
Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007)
Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor
neurons. Nat Neurosci 10:615–622
Noggle S, Fung HL, Gore A, Martinez H, Satriani KC, Prosser R, Oum K, Paull D, Druckenmiller
S, Freeby M et al (2011) Human oocytes reprogram somatic cells to a pluripotent state. Nature
478:70–75
Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM,
Perl DP, Godbold J et al (2003) A double-blind controlled trial of bilateral fetal nigral
transplantation in Parkinson’s disease. Ann Neurol 54:403–414
Osakada F, Ikeda H, Sasai Y, Takahashi M (2009a) Stepwise differentiation of pluripotent stem
cells into retinal cells. Nat Protoc 4:811–824
Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009b) In
vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule
induction. J Cell Sci 122:3169–3179
Osakada F, Hirami Y, Takahashi M (2010) Stem cell biology and cell transplantation therapy in
the retina. Biotechnol Genet Eng Rev 26:297–334
Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V,
Marro S, Sudhof TC et al (2011) Induction of human neuronal cells by defined transcription
factors. Nature 476:220–223
Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC (2007) Directed neural
differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem
Cells 25:1511–1520
Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C,
Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell
134:877–886
Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004)
Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad
Sci U S A 101:12543–12548
Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O,
Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic
neurons. Proc Natl Acad Sci U S A 108:10343–10348
Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P,
Rehncrona S, Widner H et al (1999) Dopamine release from nigral transplants visualized
in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140
Prather RS, First NL (1990) Nuclear transfer in mammalian embryos. Int Rev Cytol 120:169–190
Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, McNamara JO, White LE (2008)
Neuroscience, 4th edn. Sunderland, Sinauer
Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti
WB et al (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into
functional neurons. Cell 146:359–371
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J,
O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are
associated with familial amyotrophic lateral sclerosis. Nature 362:59–62
Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO (2012a)
Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined
conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med. doi:10.1002/
term.1458
Rowland TJ, Buchholz DE, Clegg DO (2012b) Pluripotent human stem cells for the treatment of
retinal disease. J Cell Physiol 227:457–466
Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of
human ES cell-derived dopaminergic neurons enriched by coculture with telomeraseimmortalized
midbrain astrocytes. Nat Med 12:1259–1268
Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas
E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular
degeneration: a preliminary report. Lancet 379:713–720
Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by
defined factors. Nature 475:390–393
Shaw BF, Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1
promote aggregation of the protein? Trends Biochem Sci 32:78–85
Shin S, Dalton S, Stice SL (2005) Human motor neuron differentiation from human embryonic
stem cells. Stem Cells Dev 14:266–269
Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156
Smith-Thomas LC, Stevens J, Fok-Seang J, Faissner A, Rogers JH, Fawcett JW (1995) Increased
axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors.
J Cell Sci 108(Pt 3):1307–1315
So KF, Aguayo AJ (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral
nerve transplantation into the retina of adult rats. Brain Res 328:349–354
Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O,
Mitalipova M et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells
free of viral reprogramming factors. Cell 136:964–977
Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of
mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218
Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007)
Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from
human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem
Cells 25:411–418
Springer JE (2002) Apoptotic cell death following traumatic injury to the central nervous system.
J Biochem Mol Biol 35:94–105
Strauss O (1995) The retinal pigment epithelium. Invest Ophthalmol Vis Sci 36:2327–2331
Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P, Svendsen CN (2007) GDNF
secreting human neural progenitor cells protect dying motor neurons, but not their projection
to muscle, in a rat model of familial ALS. PLoS ONE 2:e689
Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X (2010) Efficient generation of
functional dopaminergic neurons from human induced pluripotent stem cells under defined
conditions. Stem Cells 28:1893–1904
Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin
M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors.
Nature 468:521–526
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and
adult fibroblast cultures by defined factors. Cell 126:663–676
Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194(Pt 1):1–14
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM
(1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147
Thornton MR, Mantovani C, Birchall MA, Terenghi G (2005) Quantification of N-CAM and Ncadherin
expression in axotomized and crushed rat sciatic nerve. J Anat 206:69–78
Tsui A, Isacson O (2011) Functions of the nigrostriatal dopaminergic synapse and the use of
neurotransplantation in Parkinson’s disease. J Neurol 258:1393–1405
Tursun B, Patel T, Kratsios P, Hobert O (2011) Direct conversion of C. elegans germ cells into
specific neuron types. Science 331:304–308
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct
conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041
von Lewinski F, Keller BU (2005) Ca2 ? , mitochondria and selective motoneuron vulnerability:
implications for ALS. Trends Neurosci 28:494–500
Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD,
Meissner A et al (2010) Highly efficient reprogramming to pluripotency and directed
differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630
Wijeyekoon R, Barker RA (2009) Cell replacement therapy for Parkinson’s disease. Biochim
Biophys Acta 1792:688–702
Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang
W, Liu P, Gertsenstein M et al (2009) Piggybac transposition reprograms fibroblasts to
induced pluripotent stem cells. Nature 458:766–770
Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC
(2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic
stem cells. Stem Cells 23:781–790
Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC (2008) Human embryonic stem cellderived
dopaminergic neurons reverse functional deficit in Parkinsonian rats. Stem Cells
26:55–63
Yang N, Ng YH, Pang ZP, Sudhof TC, Wernig M (2011) Induced neuronal cells: how to make
and define a neuron. Cell Stem Cell 9:517–525
Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627
Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien
RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons.
Nature 476:228–231
Zhou JX, Huang S (2011) Understanding gene circuits at cell-fate branch points for rational cell
reprogramming. Trends Genet 27:55–62
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult
pancreatic exocrine cells to beta-cells. Nature 455:627–632
Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K, Ding S (2010)
Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell
Stem Cell 7:651–655
Zorner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N
Y Acad Sci 1198(Suppl 1):E22–E34
Дата: 2019-02-02, просмотров: 169.