Прямое перепрограммирование в определенные нейральные подтипы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Возможность задания различных нейральных подтипов в пробирке имеет очевидные клинические и экспериментальные пути развития для нервной де- и регенерации. DA-нейроны были одними из первых нейронов подтипа, непосредственно индуцированной из мыши, так и фибробластов человека в 2011 году (Caiazzo et al. 2011; Pfisterer et al. 2011). В обоих исследованиях активно наблюдаются пики, TH-положительные, индуцированные дофаминергические нейроны (IDA нейронные клетки) были охарактеризованы, хотя пулы различных факторов были использованы для достижения этих результатов, и только клетки, индуцированные экспрессией Ascl1, Nurr1, и Lmx1a продемонстрировали высвобождение допамина (Caiazzo et al. 2011). Появление этих факторов привело к IDA нервных клеток, полученных из двух здоровых пациентов и пациентов с PD. Такой подход имеет далеко идущие последствия для Паркинсона, связанного с дегенерацией нейронов DA, так как эти перепрограммированные клетки предположительно могут быть использованы для замены тех, которые были потеряны.

Альтернативные усилия стремились перепросматривать специфическую среднемозговую идентичность DA-нейронов, потерянных в PD, с выводами, что еще один пул факторов способен вызывать дофаминергические нервные клетки. Тем не менее, панель DA и пан-нейральных генов показали уровни экспрессии в клетках IDA, не оправдали ожиданий по сравнению с найденными в эмбриональных или взрослых среднемозговых нейронах DA, хотя эти клетки IDA способны частично восстанавливать функции дофамина при трансплантации в мышей с PD (Kim et al. 2011).

Помимо возможности вывести нейронные клетки DA с помощью стратегий перепрограммирования, с соответствующими последствиями для PD, усилия также сосредоточены на расстройствах, влияющих на спинальные двигательные нейроны, такие как ALS (болезнь Лу Герига) или SMA. Недавние исследования показали, что моторные нейроны могут быть непосредственно индуцированны из фибробластов [Индуцированные двигательных нейронов (iMN) клеток], используя принудительную экспрессию пула факторов транскрипции, который включал вышеупомянутый BAM коктейль факторов транскрипции наряду с моторными нейронами специфических факторов (Son et al 2011). Подобно эмбриональным и ESC-полученных двигательных нейронов, эти клетки iMN были избирательно чувствительны к токсичности, вызванной мутантными глиальными клетками от модели мыши БАС в совместной культуре, демонстрируя свою полезность как в качестве фенокопии моторных нейронов при болезнях, таких как SMA или ALS, а также для изучения вклада клеточных автономных в дегенерацию (Di Giorgio et al. 2007; Nagai et al. 2007). Знаковые проверки и подтверждение принципа действия исследования, несомненно, вдохновит исследователей и клиницистов, поскольку они стремятся развивать нейронные регенерационные стратегии для широкого спектра дегенеративных расстройств.

 

5.5 Будущие последствия и вопросы о перепрограммировании в отношении регенерации

The many studies discussed in this chapter made significant discoveries that markedly changed, and will continue to shape, our current understanding of regeneration. As the field of reprogramming has exploded in the last decades, an increasingly apparent need for standardization exists. Currently variations in induction methods, nomenclature, efficiency calculations, quantification methods for the extent of reprogramming, and the methods used to demonstrate functionality of derived cells currently make direct comparisons difficult. Marius Wernig’s group, who was first to develop direct reprogramming for iN cells in 2010, recently proposed a panel of criteria to be used to define iN cells with various degrees of reprogramming (Yang et al. 2011). The increasingly stringent criteria are also roughly the order of appearance of aforementioned neuronal properties in both reprogrammed iN cells and neurons during development. Broadly, they include the stepwise appearance of neuronal traits from (1) common morphological features, to (2) unique membrane characteristics, and finally (3) output function. For instance, a characteristic neuronal morphology is the first measureable changed observed, using the specific criteria of complex dendritic arborization, while synaptic plasticity, as demonstrated by short-term facilitation/depression, is the final property to appear. Between these two endpoints exist iN cells with varying degrees of reprogramming, and the authors have offered quantifiable criteria to define the extent of this reprogramming. They also point out the subtle conceptual difference between ‘‘partially reprogrammed iN cells’’ and ‘‘immature iN cells,’’ though until mechanisms underlying this process are further elucidated, distinguishing between the two is difficult.

Furthermore, issues of safety and efficiency continue to be a concern. As discussed previously, many recent studies have developed tools aimed at avoiding/ removing genome integration events caused by the retro- or lentiviral delivery of genes. This field is advancing rapidly and the affordability of these technologies will continue to increase, as will their efficiencies. The current four-factor lentiviral induction method used for the human system only had an overall efficiency of 2–4 % (Pang et al. 2011), 10-fold lower than the three-factor system used for mouse (Vierbuchen et al. 2010), though direct somatic cell reprogramming methods have generally so far seen higher conversion efficiencies than those observed in iPSC line establishment. As methods are optimized and new genes and compounds are tested, these numbers are expected to only further increase.

As methods for both indirect and direct reprogramming continue to improve, and the mechanisms for each are further delineated, many differences between the two may shrink in significance. However, one major difference between indirect and direct reprogramming is the lack of required cell proliferation in direct reprogramming. This absence could prove to be a detriment for regenerative applications of direct reprogramming, as large numbers of cells are required for transplantation in cellular replacement strategies, and the ability of reprogrammed cells to proliferate in vitro may prove beneficial, or even necessary. As direct reprogramming is currently a much less arduous process than that used to first establish iPSCs and then redifferentiate them, efforts have also focused on directly reprogramming somatic cells into lineage-specific stem cells, such as neural stem cells, in one step. It was indeed demonstrated that functional, bipotent, induced neural progenitor cells (iNPCs) could be derived from mouse fibroblasts by first inducing the overexpression of a set of the pluripotency factors used to establish iPSCs (Oct4, Kl4, Sox2, and c-myc) for 3–6 days, and then allowing the cells to expand in neural reprogramming media supplemented with FGF2, EGF, and FGF4 to support NPCs (Kim et al. 2011a). These iNPCs spontaneously differentiated into multiple neuronal cell types, as well as astrocytes, demonstrating at least a bipotent progenitor. Although these cells did not expand well in culture, they represent another possible unique application of reprogramming for regenerative purposes. As the field of reprogramming is a relatively young one, the current explosion in publications on this topic will continue to deepen our understanding of this dynamic and responsive process. The applicability of those discoveries, to neural regeneration and other biological processes, seems only limited by our imaginations.

 

Ссылочная литература

Akerud P, Canals JM, Snyder EY, Arenas E (2001) Neuroprotection through delivery of glial cell

line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease.

J Neurosci 21:8108–8118

Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct

reprogramming of adult human fibroblasts to functional neurons under defined conditions.

Cell Stem Cell 9:113–118

Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP (2003) Age-related macular

degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293

Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ,

Epstein JA et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and

human somatic cells to pluripotency. Cell Stem Cell 8:376–388

Armstrong RJ, Tyers P, Jain M, Richards A, Dunnett SB, Rosser AE, Barker RA (2003)

Transplantation of expanded neural precursor cells from the developing pig ventral

mesencephalon in a rat model of Parkinson’s disease. Exp Brain Res 151:204–217

Bahr M, Bonhoeffer F (1994) Perspectives on axonal regeneration in the mammalian CNS.

Trends Neurosci 17:473–479

Bailey SB, Eichler ME, Villadiego A, Rich KM (1993) The influence of fibronectin and laminin

during Schwann cell migration and peripheral nerve regeneration through silicon chambers.

J Neurocytol 22:176–184

Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI (1988) Human skin

fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A

85:5112–5116

Behrstock S, Ebert A, McHugh J, Vosberg S, Moore J, Schneider B, Capowski E, Hei D,

Kordower J, Aebischer P et al (2006) Human neural progenitors deliver glial cell line-derived

neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 13:379–388

Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004)

Transplantation of human embryonic stem cell-derived neural progenitors improves

behavioral deficit in Parkinsonian rats. Stem Cells 22:1246–1255

Bharti K, Miller SS, Arnheiter H (2011) The new paradigm: retinal pigment epithelium cells

generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res

24:21–34

Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their

nonneuronal neighbors. Neuron 52:39–59

Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol

32:375–413

Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated

Frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463

Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO

(2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem

cells. Stem Cells 27:2427–2434

Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD,

Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional

dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227

Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a

cultured cell line. Nature 380:64–66

Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A,

Semo M, Smart MJ et al (2009) Protective effects of human iPS-derived retinal pigment

epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4:e8152

Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly

efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling.

Nat Biotechnol 27:275–280

Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH et al

(2008) Highly efficient and large-scale generation of functional dopamine neurons from

human embryonic stem cells. Proc Natl Acad Sci U S A 105:3392–3397

Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM

(2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications

for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150

Cooper O, Hargus G, Deleidi M, Blak A, Osborn T, Marlow E, Lee K, Levy A, Perez-Torres E,

Yow A et al (2010) Differentiation of human ES and Parkinson’s disease iPS cells into ventral

midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific

regionalization by retinoic acid. Mol Cell Neurosci 45:258–266

Craveiro LM, Hakkoum D, Weinmann O, Montani L, Stoppini L, Schwab ME (2008)

Neutralization of the membrane protein Nogo-A enhances growth and reactive sprouting in

established organotypic hippocampal slice cultures. Eur J Neurosci 28:1808–1824

Cronin S, Hardiman O, Traynor BJ (2007) Ethnic variation in the incidence of ALS: a systematic

review. Neurology 68:1002–1007

Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127

Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult

axons in white matter tracts of the central nervous system. Nature 390:680–683

Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in

degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822

Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts

fibroblasts to myoblasts. Cell 51:987–1000

Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and

apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43:3312–3318

Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect

of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci

10:608–614

Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier

G, Leibel R, Goland R et al (2008) Induced pluripotent stem cells generated from patients

with ALS can be differentiated into motor neurons. Science 321:1218–1221

Dowling JE (1970) Organization of vertebrate retinas. Invest Ophthalmol 9:655–680

Dowling JE, Werblin FS (1971) Synaptic organization of the vertebrate retina. Vis Res Suppl

3:1–15

Du H, Lim SL, Grob S, Zhang K (2011) Induced pluripotent stem cell therapies for geographic

atrophy of age-related macular degeneration. Semin Ophthalmol 26:216–224

Ebert AD, Svendsen CN (2010) Stem cell model of spinal muscular atrophy. Arch Neurol

67:665–669

Ebert AD, Beres AJ, Barber AE, Svendsen CN (2008) Human neural progenitor cells overexpressing

IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s

disease. Exp Neurol 209:213–223

Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced

pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T,

Okita K, Asaka et al (2012) Drug screening for ALS using patient-specific induced pluripotent

stem cells. Sci Transl Med 4 145ra104

Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse

embryos. Nature 292:154–156

Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma

23:371–383

Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull

49:377–391

Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver

S, Trojanowski JQ et al (2001) Transplantation of embryonic dopamine neurons for severe

Parkinson’s disease. N Engl J Med 344:710–719

Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve

regeneration. Microsurgery 18:397–405

Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration–

emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471

Gouras P, Algvere P (1996) Retinal cell transplantation in the macula: new techniques. Vis Res

36:4121–4125

Grandpre T, Strittmatter SM (2001) Nogo: a molecular determinant of axonal growth and

regeneration. Neuroscientist 7:377–386

Gurdon JB, Uehlinger V (1966) ‘‘Fertile’’ intestine nuclei. Nature 210:1240–1241

Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from

the transplantation of single somatic nuclei. Nature 182:64–65

Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An

integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at

the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog

Retin Eye Res 20:705–732

Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D,

Hallett PJ et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells

grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl

Acad Sci U S A 107:15921–15926

Harrower TP, Tyers P, Hooks Y, Barker RA (2006) Long-term survival and integration of porcine

expanded neural precursor cell grafts in a rat model of Parkinson’s disease. Exp Neurol

197:56–69

Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured

spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord

injury. Neurosurg Focus 25:E14

Hefferan MP, Galik J, Kakinohana O, Sekerkova G, Santucci C, Marsala S, Navarro R, Hruska-

Plochan M, Johe K, Feldman E et al (2012) Human neural stem cell replacement therapy for

amyotrophic lateral sclerosis by spinal transplantation. PLoS ONE 7:e42614

Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M

(2009) Generation of retinal cells from mouse and human induced pluripotent stem cells.

Neurosci Lett 458:126–131

Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature

407:963–970

Horner PJ, Gage FH (2002) Regeneration in the adult and aging brain. Arch Neurol

59:1717–1720

Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem

cells. Nat Protoc 4:1295–1304

Hu BY, Du ZW, Zhang SC (2009) Differentiation of human oligodendrocytes from pluripotent

stem cells. Nat Protoc 4:1614–1622

Huang S (2009) Reprogramming cell fates: reconciling rarity with robustness. BioEssays

31:546–560

Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L (2011) Induction of functional

hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475:386–389

Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous

systems. Results Probl Cell Differ 48:339–351

Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H,

Smith Y, Wiser O, Gropp M et al (2009) Directed differentiation of human embryonic stem

cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010)

Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell

142:375–386

Jordan PM, Ojeda LD, Thonhoff JR, Gao J, Boehning D, Yu Y, Wu P (2009) Generation of spinal

motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast

growth factor. J Neurosci Res 87:318–332

Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of

pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011a)

Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A

108:7838–7843

Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung CY, Dawlaty

MM, Tsai LH et al (2011b) Functional integration of dopaminergic neurons directly converted

from mouse fibroblasts. Cell Stem Cell 9:413–419

Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen

CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum

Gene Ther 16:509–521

Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived

retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized

vascular endothelial growth factor secretion, and gene expression pattern similar to native

RPE. Stem Cells 29:825–835

Kolb H, Nelson R, Ahnelt P, Cuenca N (2001) Cellular organization of the vertebrate retina. Prog

Brain Res 131:3–26

Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G,

Antonacci C, Buch A et al (2011) Dopamine neurons derived from human ES cells efficiently

engraft in animal models of Parkinson’s disease. Nature 480:547–551

Laabs T, Carulli D, Geller HM, Fawcett JW (2005) Chondroitin sulfate proteoglycans in neural

development and regeneration. Curr Opin Neurobiol 15:116–120

Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells

from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774

Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification

and transplantation of photoreceptors derived from human induced pluripotent stem cells.

PLoS ONE 5:e8763

Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V,

Studer L (2007) Directed differentiation and transplantation of human embryonic stem cellderived

motoneurons. Stem Cells 25:1931–1939

Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C,

Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular

atrophy-determining gene. Cell 80:155–165

Lepore AC, O’Donnell J, Kim AS, Williams T, Tuteja A, Rao MS, Kelley LL, Campanelli JT,

Maragakis NJ (2011) Human glial-restricted progenitor transplantation into cervical spinal

cord of the SOD1 mouse model of ALS. PLoS ONE 6:e25968

Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005)

Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221

Lindvall O, Bjorklund A (2011) Cell therapeutics in Parkinson’s disease. Neurotherapeutics

8:539–548

Lindvall O, Barker RA, Brustle O, Isacson O, Svendsen CN (2012) Clinical translation of stem

cells in neurodegenerative disorders. Cell Stem Cell 10:151–155

Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene

regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A

96:6307–6311

Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term

safety and function of RPE from human embryonic stem cells in preclinical models of

macular degeneration. Stem Cells 27:2126–2135

Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N,

Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in

dystrophic RCS rats. Cloning Stem Cells 8:189–199

Marro S, Pang ZP, Yang N, Tsai MC, Qu K, Chang HY, Sudhof TC, Wernig M (2011) Direct

lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem

Cell 9:374–382

McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and

cell fusion. Science 220:1300–1302

Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M (2012) Efficient stage specific

differentiation of human pluripotent stem cells towards retinal photoreceptor cells. Stem Cells

30:673–686.

Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm

DM (2009) Modeling early retinal development with human embryonic and induced

pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703

Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin

JM, Tian S, Stewart R et al (2011) Optic vesicle-like structures derived from human

pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells

29:1206–1218

Montani L, Gerrits B, Gehrig P, Kempf A, Dimou L, Wollscheid B, Schwab ME (2009) Neuronal

Nogo-A modulates growth cone motility via Rho-GTP/LIMK1/cofilin in the unlesioned adult

nervous system. J Biol Chem 284:10793–10807

Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007)

Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor

neurons. Nat Neurosci 10:615–622

Noggle S, Fung HL, Gore A, Martinez H, Satriani KC, Prosser R, Oum K, Paull D, Druckenmiller

S, Freeby M et al (2011) Human oocytes reprogram somatic cells to a pluripotent state. Nature

478:70–75

Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM,

Perl DP, Godbold J et al (2003) A double-blind controlled trial of bilateral fetal nigral

transplantation in Parkinson’s disease. Ann Neurol 54:403–414

Osakada F, Ikeda H, Sasai Y, Takahashi M (2009a) Stepwise differentiation of pluripotent stem

cells into retinal cells. Nat Protoc 4:811–824

Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009b) In

vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule

induction. J Cell Sci 122:3169–3179

Osakada F, Hirami Y, Takahashi M (2010) Stem cell biology and cell transplantation therapy in

the retina. Biotechnol Genet Eng Rev 26:297–334

Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V,

Marro S, Sudhof TC et al (2011) Induction of human neuronal cells by defined transcription

factors. Nature 476:220–223

Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC (2007) Directed neural

differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem

Cells 25:1511–1520

Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C,

Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell

134:877–886

Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004)

Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad

Sci U S A 101:12543–12548

Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O,

Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic

neurons. Proc Natl Acad Sci U S A 108:10343–10348

Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P,

Rehncrona S, Widner H et al (1999) Dopamine release from nigral transplants visualized

in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140

Prather RS, First NL (1990) Nuclear transfer in mammalian embryos. Int Rev Cytol 120:169–190

Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, McNamara JO, White LE (2008)

Neuroscience, 4th edn. Sunderland, Sinauer

Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti

WB et al (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into

functional neurons. Cell 146:359–371

Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J,

O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are

associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO (2012a)

Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined

conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med. doi:10.1002/

term.1458

Rowland TJ, Buchholz DE, Clegg DO (2012b) Pluripotent human stem cells for the treatment of

retinal disease. J Cell Physiol 227:457–466

Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of

human ES cell-derived dopaminergic neurons enriched by coculture with telomeraseimmortalized

midbrain astrocytes. Nat Med 12:1259–1268

Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas

E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular

degeneration: a preliminary report. Lancet 379:713–720

Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by

defined factors. Nature 475:390–393

Shaw BF, Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1

promote aggregation of the protein? Trends Biochem Sci 32:78–85

Shin S, Dalton S, Stice SL (2005) Human motor neuron differentiation from human embryonic

stem cells. Stem Cells Dev 14:266–269

Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

Smith-Thomas LC, Stevens J, Fok-Seang J, Faissner A, Rogers JH, Fawcett JW (1995) Increased

axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors.

J Cell Sci 108(Pt 3):1307–1315

So KF, Aguayo AJ (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral

nerve transplantation into the retina of adult rats. Brain Res 328:349–354

Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O,

Mitalipova M et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells

free of viral reprogramming factors. Cell 136:964–977

Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of

mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218

Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007)

Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from

human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem

Cells 25:411–418

Springer JE (2002) Apoptotic cell death following traumatic injury to the central nervous system.

J Biochem Mol Biol 35:94–105

Strauss O (1995) The retinal pigment epithelium. Invest Ophthalmol Vis Sci 36:2327–2331

Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P, Svendsen CN (2007) GDNF

secreting human neural progenitor cells protect dying motor neurons, but not their projection

to muscle, in a rat model of familial ALS. PLoS ONE 2:e689

Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X (2010) Efficient generation of

functional dopaminergic neurons from human induced pluripotent stem cells under defined

conditions. Stem Cells 28:1893–1904

Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin

M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors.

Nature 468:521–526

Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and

adult fibroblast cultures by defined factors. Cell 126:663–676

Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194(Pt 1):1–14

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM

(1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

Thornton MR, Mantovani C, Birchall MA, Terenghi G (2005) Quantification of N-CAM and Ncadherin

expression in axotomized and crushed rat sciatic nerve. J Anat 206:69–78

Tsui A, Isacson O (2011) Functions of the nigrostriatal dopaminergic synapse and the use of

neurotransplantation in Parkinson’s disease. J Neurol 258:1393–1405

Tursun B, Patel T, Kratsios P, Hobert O (2011) Direct conversion of C. elegans germ cells into

specific neuron types. Science 331:304–308

Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct

conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

von Lewinski F, Keller BU (2005) Ca2 ? , mitochondria and selective motoneuron vulnerability:

implications for ALS. Trends Neurosci 28:494–500

Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD,

Meissner A et al (2010) Highly efficient reprogramming to pluripotency and directed

differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

Wijeyekoon R, Barker RA (2009) Cell replacement therapy for Parkinson’s disease. Biochim

Biophys Acta 1792:688–702

Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang

W, Liu P, Gertsenstein M et al (2009) Piggybac transposition reprograms fibroblasts to

induced pluripotent stem cells. Nature 458:766–770

Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC

(2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic

stem cells. Stem Cells 23:781–790

Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC (2008) Human embryonic stem cellderived

dopaminergic neurons reverse functional deficit in Parkinsonian rats. Stem Cells

26:55–63

Yang N, Ng YH, Pang ZP, Sudhof TC, Wernig M (2011) Induced neuronal cells: how to make

and define a neuron. Cell Stem Cell 9:517–525

Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien

RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons.

Nature 476:228–231

Zhou JX, Huang S (2011) Understanding gene circuits at cell-fate branch points for rational cell

reprogramming. Trends Genet 27:55–62

Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult

pancreatic exocrine cells to beta-cells. Nature 455:627–632

Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K, Ding S (2010)

Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell

Stem Cell 7:651–655

Zorner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N

Y Acad Sci 1198(Suppl 1):E22–E34

Дата: 2019-02-02, просмотров: 151.