Способы математического доказательства
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В обыденной жизни часто, когда говорят о доказательстве, имеют в виду просто проверку высказанного утверждения. В математике проверка и доказательство – это разные вещи, хотя и связанные между собой. Пусть, например, требуется доказать, что если в четырехугольнике три угла прямые, то он – прямоугольник.

Если мы возьмем какой-либо четырехугольник, у которого три угла прямые, и, измерив четвертый, убедимся в том, что он действительно прямой, то эта проверка сделает данное утверждение более правдоподобным, но еще не доказанным.

Чтобы доказать данное утверждение, рассмотрим произвольный четырехугольник, в котором три угла прямые. Так как в любом выпуклом четырехугольнике сумма углов 360⁰, то и в данном она составляет 360⁰. Сумма трех прямых углов равна 270⁰ (90⁰•3 = 270⁰), и, значит, четвертый имеет величину 90⁰ (360⁰ -  270⁰). Если все углы четырехугольника прямые, то он – прямоугольник Следовательно, данный четырехугольник будет прямоугольником. Что и требовалось доказать.

Заметим, что сущность проведенного доказательства состоит в построении такой последовательности истинных утверждений (теорем, аксиом, определений), из которых логически следует утверждение, которое нужно доказать.

Вообще доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений.

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и последние.

Таким образом, основой математического доказательства является дедуктивный вывод. А само доказательство – это цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Например, в приведенном выше доказательстве можно выделить следующие умозаключения:

1. В любом выпуклом четырехугольнике сумма углов равна 360⁰; данная фигура – выпуклый четырехугольник, следовательно, сумма углов в нем 360⁰.

2. Если известна сумма всех углов четырехугольника и сумма трех из них, то вычитанием можно найти величину четвертого; сумма всех углов данного четырехугольника равна 360⁰, сумма трех 270⁰ (90⁰•3 = 270⁰), то величина четвертого  360⁰ -  270⁰ = 90⁰.

3. Если в четырехугольнике все углы прямые, то этот четырехугольник – прямоугольник; в данном четырехугольнике все углы прямые, следовательно, он прямоугольник.

Все приведенные умозаключения выполнены по правилу заключения и, следовательно, являются дедуктивными.

Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 6 < 8.

Итак, говоря о структуре математического доказательства, мы должны понимать, что она, прежде всего, включает в себя утверждение, которое доказывается, и систему истинных утверждений, с помощью которых ведут доказательство.

Следует еще заметить, что математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

 

По способу ведения (по форме) различают прямые и косвенные доказательства. Рассмотренное ранее доказательство было прямым – в нем, основываясь на некотором истинном предложении и с учетом условия теоремы, строилась цепочка дедуктивных умозаключений, которая приводила к истинному заключению.

Примером косвенного доказательства является доказательство методом от противного. Сущность его состоит в следующем. Пусть требуется доказать теорему

А ⇒ В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение «не В» к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А. Как только такое противоречие устанавливают, процесс доказательства заканчивают и говорят, что полученное противоречие доказывает истинность теоремы

А ⇒ В.

Задача 1. Доказать, что если а + 3 > 10, то а ≠ 7. Метод от противного.

Задача 2. Доказать, что если х² - четное число, то х – четно. Метод от противного.

Задача 3. Даны четыре последовательных натуральных числа. Верно ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.

Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.

Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.

Задача 5. Верно ли, что если натуральное число n не кратно 3, то значение выражения n² + 2 кратно 3? Метод полной индукции.

 

Основные выводы

В этом пункте познакомились с понятиями: умозаключение, посылка и заключение, дедуктивные (правильные) умозаключения, неполная индукция, аналогия, прямое доказательство, косвенное доказательство, полная индукция.

Мы выяснили, что неполная индукция и аналогия тесно связаны с дедукцией: выводы, полученные с помощью неполной индукции и аналогии, надо либо доказывать, либо опровергать. С другой стороны, дедукция не возникает на пустом месте, а является результатом предварительного индуктивного изучения материала.

Дедуктивные умозаключения позволяют из уже имеющегося знания получать новые истины, и притом с помощью рассуждения, без обращения к опыту, интуиции и т.д.

Мы выяснили, что математическое доказательство – это цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Познакомились с простейшими из них: правилом заключения, правилом отрицания, правилом силлогизма. Узнали, что проверять правильность умозаключений можно с помощью кругов Эйлера.

 

Дата: 2019-02-02, просмотров: 261.