2.1. Построить треугольник, вершины которого находятся в точках и найти:
1) уравнение стороны АВ;
2) уравнение медианы, проведенной из вершины С;
3) координату точки пересечения медиан;
4) уравнение высоты, опущенной из вершины В на сторону АС и ее длину;
5) уравнение прямой, проходящей через точку С параллельно прямой АВ;
6) площадь треугольника.
2.2. Даны вершины треугольной пирамиды , . Найти:
1) угол между ребрами и ;
2) площадь грани ;
3) объем пирамиды ;
4) длину высоты, опущенной из вершины S на грань АВС;
5) уравнение высоты, опущенной из вершины S на грань АВС.
Краткие теоретические сведения для выполнения контрольной работы № 2 и решение типовых задач
Прямая на плоскости
Уравнение вида
называется общим уравнением прямой.
Уравнение вида
называется уравнением прямой с угловым коэффициентов, здесь , - угол, образованный прямой с положительным направлением оси Ох, b – ордината точки пересечения прямой с осью Оу.
Пусть даны две точки прямой и . Уравнение прямой, проходящей через две заданные точки имеет вид
.
Уравнение прямой, проходящей через заданную точку в заданном направлении, определяемом угловым коэффициентом k , имеет вид
.
Условие параллельности двух прямых
Две прямые параллельны в том и только в том случае, когда составляют равные углы с осью Ох, следовательно или .
Условие перпендикулярности двух прямых
Две прямые перпендикулярны в том и только в том случае, когда угол j между ними равен , т.е. .
Координаты точки , делящей отрезок АВ в данном отношении , где , , можно вычислить по формулам
.
В частности, если , то , т.е. М – середина отрезка АВ, то формулы примут вид
.
Если уравнение прямой дано в общей форме: , то расстояние точки до этой прямой находится по формуле:
.
Площадь треугольника с вершинами , можно вычислить по формуле
.
Пример
Даны вершины треугольника . Найти:
1) уравнение стороны АВ;
2) уравнение медианы, проведенной из вершины С;
3) координату точки пересечения медиан;
4) уравнение высоты, опущенной из вершины В на сторону АС и ее длину;
5) уравнение прямой, проходящей через точку С параллельно прямой АВ;
6) площадь треугольника.
Решение
1) Используем уравнение прямой, проходящей через две точки . Подставив координаты точек , получим
- общее уравнение прямой АВ, из которого находим уравнение прямой с угловым коэффициентом , .
2) Медиана, проведенная из вершины С делит противолежащую сторону АВ треугольника пополам. Найдем координаты точки Е середины стороны (рис.1):
, т.е. , . Подставим координаты точек в уравнение прямой, проходящей через две точки, получим - общее уравнение прямой СЕ.
3) Точка М делит каждую медиану в отношении , считая от вершины. Таким образом, ее координаты можно найти по формулам:
.
В нашем случае
,
откуда .
4) Найдем уравнение прямой, проходящей через заданную точку перпендикулярно прямой из уравнения . Найдем угловой коэффициент прямой АС, используя уравнение прямой, проходящей через две точки и :
- уравнение АС.
Угловой коэффициент прямой АС равен , тогда, используя условие перпендикулярности двух прямых , получим
- уравнение высоты.
Длину высоты можно найти, как расстояние от точки до прямой АС по формуле . В нашем случае уравнение прямой АС: , следовательно,
.
5) Для нахождения уравнения прямой, проходящей через точку С параллельно прямой АВ используем уравнение прямой, проходящей через заданную точку в заданном направлении и условие параллельности двух прямых. Известно, что угловой коэффициент прямой АВ равен , следовательно,
-
- уравнение искомой прямой.
6) Площадь треугольника находится по формуле: , в нашем случае
.
у А(4;6)
Е
В(-4;0) М
0 1 х
С(-1;-4)
Рис. 1
Дата: 2019-02-02, просмотров: 233.