ИМПЕДАНС БИОЛОГИЧЕСКОГО ОБЪЕКТА
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Изучение переменных токов имеет большое значение при рассмотрении физиологических процессов в организме человека и животных. Переменные токи нашли большое применение при лечении различных заболеваний. На использовании переменных токов основаны ряд физиотерапевтических методов лечения и диагностики.

Переменные токи могут оказывать раздражающее действие на ткани организма. Оно связанно с кратковременным смещением ионов под действием переменного электрического поля, которое также может вызывать изменение концентрации тканевых ионов у клеточных мембран. Раздражающее действие переменного тока в значительной мере зависит от его частоты. С увеличением частоты, когда смещение ионов в направленном движении делается соизмеримым со смещением их при тепловом движении, ток уже не оказывает на ткани раздражающего действия. При этом оказывается тепловое действие тока. Это свойство используется для прогревания тканей организма высокочастотными переменными токами (диатермия).

Другими физиотерапевтическими методами, использующими высокочастотные переменные токи, является дарсонвализация – воздействие высокочастотным током в виде разряда, проходящего между специальным электродом и поверхностью кожи больного (аппараты типа «Искра» и др.).

Электропроводность клеток и тканей для переменного тока.

Биологическим объектам присущи пассивные электрические свойства: сопротивление и емкость. Вещества, из которых состоят биологические ткани, немагнитны, и, следовательно, индуктивность их равна нулю. Изучение пассивных электрических свойств биологических объектов имеет большое значение для понимания их структуры и физико-химических свойств.

Биологические ткани обладают свойствами как проводников, так и диэлектриков. Наличие свободных ионов в клетках и тканях обусловливает проводимость этих объектов. Диэлектрические свойства биологических объектов определяются структурными компонентами и явлениями поляризации. Поляризация - процесс образования объемного дипольного электрического момента среды. Поляризация по своей природе делится на несколько видов.

 

Виды поляризаций.

Электронная поляризация - наиболее общий вид поляризации представляет собой смещение электронов на своих орбитах относительно положительно заряженных ядер в атомах и ионах. В результате такого смещения атом или ион превращается в индуцированный диполь с направлением, противоположным внешнему полю. Время возникновения поляризации после мгновенного наложения поля, называется временем релаксации. Оно составляет в данном случае 10-16- 10-14 с.

Дипольная (ориентационная) поляризация типична для многих жидкостей и газов (вода, спирты, нитробензол). Молекулы этих полярных диэлектриков не симметричны: “центры масс” их положительных и отрицательных зарядов не совпадают и молекулы обладают дипольным моментом. Дипольные моменты отдельных молекул в отсутствие электрического поля ориентированы хаотически, а во внешнем электрическом поле приобретают преимущественную ориентацию вдоль поля (рис. 14а).

Значительными дипольными моментами вследствие диссоциации ионных групп, а также вследствие адсорбции ионов обладают молекулы белков и других высокомолекулярных соединений. Поэтому в растворах этих веществ дипольная поляризация, обусловленная вращением их полярных молекул, имеет большое значение. Время релаксации дипольной поляризации изменяется в пределах от 10-13- 10-7 с.

Макроструктурная поляризация возникает под действием электрического поля вследствие неоднородности электрических свойств вещества. Для ее возникновения необходимо наличие слоев с различной электропроводностью. Под действием поля свободные ионы и электроны, содержащиеся в проводящих субстанциях, перемещаются в пределах каждого включения до границы проводящего слоя. Дальнейшее перемещение свободных зарядов невозможно вследствие низкой проводимости соседних слоев (рис. 14б). В результате этого процесса проводящее включение приобретает дипольный момент и ведет себя подобно гигантской полярной молекуле. Этот вид поляризации играет основную роль в биологических объектах, являющихся гетерогенными структурами. Гетерогенность тканей в большой степени обусловлена наличием мембран. К ним относятся клеточные мембраны и мембраны, окружающие клеточные органоиды и образующие эндоплазматическую сеть.

Цитоплазма клеток обладает малым активным сопротивлением из-за наличия в ней большого количества свободных ионов, в то время как у мембран вследствие их малой проницаемости для ионов, оно очень высокое (примерно 1000 Ом на каждый см2 площади поверхности мембраны).

 

 


Рис. 14


Поверхностная поляризация происходит на поверхностях, имеющих двойной электрический слой. При наложении внешнего электрического поля происходит перераспределение ионов диффузной части двойного электрического слоя: частицы дисперсной фазы смещаются в одну сторону, а ионы диффузного слоя - в другую. В результате частицы дисперсной фазы с противоионами диффузного слоя превращаются в наведенные диполи. Время релаксации поверхностной поляризации лежит в пределах от 10-3 до 1 с.

Электролитическая поляризация возникает между электродами, опущенными в раствор электролита, при протекании через них электрического тока. При наложении разности потенциалов на электроды произойдет перераспределение потенциалов, определяющих ионов в диффузной части двойного электрического слоя. В области катода увеличится концентрация катионов, а в области анода - уменьшится. Следовательно, и в данном случае появление поляризации обусловлено смещением зарядов, которое проявляется в изменении концентрации ионов в приэлектродной области. Время релаксации электролитической поляризации имеет порядок 10-4 – 10-2 с.

Все описанные виды поляризации в той или иной степени присущи биологическим объектам.

 



Дата: 2019-02-02, просмотров: 267.