Она имеет две ветви, соответствующие прямому и обратному включению диода
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр. Этот ток называется прямым Iпр. Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

- 0,7 Вольт для кремниевых диодов, - 0,3 Вольт - для германиевых.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

несколько схем подключения диодов, часто встречающихся на практике.

Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков.

Далее несколько менее очевидных схем (для постоянного тока):

  1. Диоды могут выступать как "развязывающие" элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А, причем взаимное влияние их источников друг на друга отсутствует.
  2. Защита от переполюсовки (жаргонное - "защита от дураков"). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод "открывается", когда напряжение на нем достигнет Uоткр, то при Uвнеш <Uвн+Uоткр питание осуществляется от внутреннего источника, иначе - подключается внешний.

Светодиоды и фотодиоды, их характеристики и параметры.

Основная масса полупроводниковых радиокомпонентов в рабочих режимах оперирует электрической энергией, которая органами зрения не воспринимается. Тем не менее, существует целый кластер элементов, работающих с электромагнитными волнами видимого спектра. Это светодиоды и фотодиоды. Объединяющим их моментом является наличие полупроводникового p-n-перехода, благодаря чему эти радиодетали представляют собой обычный электрический вентиль

Светодиоды


Основная функция данных полупроводниковых радиокомпонентов заключается в выработке светового излучения при прохождении электрического тока в прямом направлении. При подаче прямого смещения, как и в обычном диоде, начинаются процессы рекомбинации электронов и дырок.
Для того чтобы полупроводник получил способность к генерации фотонов, он особым образом легируется. В результате материал насыщается носителями заряда, которые возбуждают электромагнитные колебания видимого спектра, которые органами зрения воспринимаются как свечение.

Преимуществом светодиодов является когерентность излучения. Это означает, что элемент вырабатывает электромагнитные колебания только одной длины волны. В практической радиоэлектронике наибольшее распространение получили следующие светодиоды: - красные; - жёлтые; - оранжевые; - зелёные. Различаются излучательные и индикаторные светодиоды.  Первые используются в оптоволоконных линиях связи в составе оптических пар. Вторые применяются в устройствах индикации.

Основные характеристики светоизлучающих диодов:

  1. Максимально допустимый постоянный прямой ток;
  2. Максимально допустимый импульсный прямой ток;
  3. Максимально допустимое обратное постоянное напряжение;
  4. Сила света светодиода;
  5. Максимум спектрального распределения излучения светодиода;
  6. Постоянное прямое напряжение;
  7. Диапазон рабочей температуры окружающей среды.

Фотодиоды

Эти полупроводниковые радиокомпоненты в противоположность светодиодам фотонов не излучают. Напротив, для исполнения своих функций фотодиоды сами нуждаются в квантах света. Принцип действия элементов заключается в возникновении обратного тока в результате освещения их каким-либо источником света.
На самом деле p-n-переход остаётся закрытым, и через него протекает обычный обратный ток, но к нему добавляется так называемый фототок, который возникает из-за воздействия на полупроводник фотонов внешнего освещения. Поглощение световых квантов в переходной зоне приводит к образованию неосновных носителей заряда на расстоянии от p-n-перехода, которое меньше так называемой диффузионной длины. Благодаря этому и возникает фототок.

В некоторых схемах фотодиод используется в качестве источника тока, работая в гальваническом режиме. То есть в радиокомпоненте при его освещении вырабатывается ток, который далее используется в других частях радиоэлектронного устройства. В перечень эксплуатационных достоинств фотодиодов входят следующие:

  1. стабильность фототока; 2. линейный характер зависимости тока от освещённости;

3. низкое входное сопротивление при прямом включении; 4. нетребовательность к температурному режиму.




Дата: 2019-02-02, просмотров: 286.