По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками . К числу полупроводников относятся многие химические элементы (германий, кремний, селен, индий, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. На электрическую проводимость полупроводников оказывает влияние кроме температуры сильное электрическое поле, давление, воздействие оптического и ионизирующего излучения, наличие примесей и другие факторы, способные изменять структуру вещества и состояние электронов.
Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры.
С понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.
Концентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется с обственной электрической проводимостью полупроводников.
парно-электронные связи в кристалле германия и образование электронно-дырочной пары
При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок.
Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.
Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).
Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In
Примесный полупроводник с дырочной проводимостью называется полупроводником p -типа . Основными носителями свободного заряда в полупроводниках p-типа являются дырки.
Образование, свойства р-п перехода.
P-N переход — точка в полупроводниковом приборе, где материал N-типа и материал P-типа соприкасаются друг с другом. Материал N-типа обычно упоминается как катодная часть полупроводника, а материал P-типа — как анодная часть. Схема P-N перехода
Когда между этими двумя материалами возникает контакт, то электроны из материала n-типа перетекают в материал p-типа и соединяются с имеющимися в нем отверстиями. Небольшая область с каждой стороны линии физического соприкосновения этих материалов почти лишена электронов и отверстий. Эта область в полупроводниковом приборе называется обедненной областью. Эта обедненная область является ключевым звеном в работе любого прибора, в котором есть P-N переход.
Прямой P-N переход Когда P-N переход прямой (с прямым смещением), то тогда на анод подается положительный потенциал, а на катод — отрицательный. Результатом этого процесса является сужение обедненной области, что уменьшает сопротивление движению тока через P-N переход.
Обратный P-N переход Когда P-N переход обратный (с обратным смещением), то отрицательный потенциал подается на анод, а положительный — на катод.
Дата: 2019-02-02, просмотров: 361.