Воздействие негативных факторов на человека и среду обитания
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

1.4.1. Естественные системы зашиты человека от опасных и вред­ных факторов. В основе всех защитных реакций человека – от сознательного изменения поведения до простейших защитных рефлексов - лежит работа его нервной системы с ее безусловными и условными рефлексами и сложнейшими формами приспособительных реакции, на­пример, динамическим стереотипом.

Организм человека имеет ряд естественных систем, обеспечивающих его защиту при воздействии опасных и вредных факторов сре­ды.

Критериями допустимого воздействия вредных факторов на чело­века являются сохранение его здоровья и высокой работоспособнос­ти, а также отсутствие негативных изменений в его потомстве.

1.4.2. Воздействие на человека вредных веществ (ВВ), их нормирование . Перечень ВВ производственной среды приведен в ГОСТ 12.1.005-88. В бытовой среде ВВ чаще всего являются токси­ны, т.е. сложные соединения животного, растительного и бактериального происхождения, вызывающие отравления.

 Основными эффектами воздействия ВЗ являются острые и хрони­ческие отравления.

Нормирование содержания ВВ заключается в установлении для них ПДК, т.е. концентраций ЗВ, которые при ежедневной работе в течение всего рабочего стажа не вызывают заболеваний или нару­шений здоровья, обнаруживаемых современными методами исследований, в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений. Различают максимально разовые (воз­действующие в течение 20 минут), среднесменные и среднесуточные ПДК. Для ВВ с неустановленными ПДК временно вводятся ориентиро­вочные безопасные уровни воздействия (ОБУВ), которые должны пересматриваться через 3 года с учетом накопленных данных или за­меняться ПДК.

1.4.3 . Воздействие на человека механических и акустических колебаний, их нормирование. К механическим колебаниям относятся вибрации, которые возбуждаются рабочими органами вибромашин или возникают при движении транспортных средств и работе произ­водственного оборудования. К акустическим колебаниям относят волнообразные упругие колебания в воздухе, жидкой и твердой сре­де под воздействием возмущающей силы. Колебания в диапазоне - f = 16 Гц ... 20 кГц называют звуковыми, с f <16 Гц - инфразвуком, с f > 20 кГц - ультразвуком.

1.4.3.1. Вибрации, передающиеся на тело человека через его опору, называют общими, а передающиеся через руки - локаль­ными.

Основные характеристики вибраций: частота, колебаний f, Гц (диапазон общих вибраций 0,8...80 Гц, локальных 1...1000 Гц), виброскорость V, м/с, и виброускорение а, м/с2. Помимо абсолютных значений V и а, широко применяют их логарифмичес­кие уровни в дБ (Lv и La), которые рассчитываются по формулам

 


                                                                                                     (2)

 

где 5∙10-8 и 1∙10-6 - опорные величины V и a. Предпочтительным параметром при оценке вибраций является а.

Главным эффектом воздействия вибра­ций является развитие вибрационной болезни - одного из ведущих профзаболеваний. ПДУ вибрации установлены c учетом их спектра и направления осей действия (через весовые коэффициенты для f и осей Z, X, Y) для 3 критериев оценки - безопасность, снижение произво­дительности труда и комфортность. Нормы локальной и транспорт­ной вибрации обеспечивают безопасность персонажи, (профилактику виброболезни), а транспортно-технологической и технологической - предупреждают снижение производительности труда. Для работников умственного труда установлен критерий комфорта (он в 3,15 раз ниже нормы снижения производительности).

Нормы вибраций в ГОСТ 12.1.012-90 приведены в абсолютных значениях и относительных уровнях V и а в 1/3 октавных по­лосах f   для общих вибраций и в октавных полосах f для ло­кальных. ГОСТом также установлены предельные дозы вибрационного воздействия.

1.4.3.2. Шумом называют беспорядочные звуки различной приро­ды со случайными изменениями по частоте и амплитуде, которые ме­шают работе, отдыху и восприятию речи. Основной его характерис­тикой является интенсивность - мощность потока энергии в Вт на м2. Последняя прямо пропорциональна квадрату звукового давления или силе, действующей на единицу площади. Поскольку прямое изме­рение интенсивности шума невозможно, для ее оценки используется уровень звукового давления, дБ, в октавных полосах частот со среднегеометрическими f 31.5; 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Уровень звукового давления L является ло­гарифмом отношения измеряемого давления Px к ее пороговому значению Ро - порогу слышимости человеческого уха, равному 2∙102 Па.      

 


                                                                                                               (3)

 

 

Воздействие любого уровня шума вызывает адаптацию слухового анализатора. При громкостной адаптации пороги слуха за 2...5 мин повышаются на 15...25 дБ, а восстановление их до исходного уров­ня занимает 3 ч. Измерение порогов слуха называется аудиометрией.

Нормативы шума - в производственных условиях установлены ГОСТ 12.1.003-83, а в жилых помещениях, общественных зданиях и на территории жилой застройки - в СН 3077-84 и ГОСТ 12.1.036-81.

Шум нормируется по предельным спектрам (ПС), каждый из которых имеет свой индекс, соответствующий уровню звукового давления для данного спектра на f = 1000 Гц. Нормируемой характеристи­кой является и уровень звукового давления в октавных полосах f.      

1.4.3.3. Воздействие инфразвука на человека проявляется в на­рушении пространственной ориентации, головных болях, головокружения, снижении внимания и работоспособности (особенно на f около 7 Гц). Ряд симптомов можно объяснить резонансными явлени­ями внутренних органов: например, резонанс сердца наступает при 7 Гц, других органов - 3,5...5 Гц.

Нормативным документом для инфразвука на производстве являет­ся СН 22-74-80, а на территории жилой застройки - СанПиН 42-128-4948-89.

1.4.3.4. Ультразвук в последние десятилетия получил широкое распространение в промышленности, науке и медицине. В основе его биологического действия лежит молекулярный нагрев тканей организма и кавитация или образование в жидкостях организма га­зовых пузырьков. На человека ультразвук может действовать через воздушную среду и контактно - через жидкую и твердую среду. При действии ультразвука возникают нервные расстройства, нарушения состава крови, потеря слуха, повышенная утомляемость.

Нормативы ультразвукового воздействия установлены ГОСТ 12.1.001-83.

1.4.4. Воздействие на человека, сооружения и технику ударной волны (УВ) взрыва. Взрыв - это внезапное высвобождение энергии взрывчатых веществ, сопровождающееся образованием волны сжатия (при наземном взрыве - воздушная УВ). По форме УВ состоит из от­носительно короткой фазы избыточного давления (фазы сжатия) и более продолжительной, но менее выраженной фазы разрежения с от­рицательным давлением (рис. 2). Негативное воздействие второй фазы на человека и здания несущественно.

 

Рис. 2. Характер изменения давления во времени в фиксированной точке при прохождении УВ.

УВ характеризуется скоростью распространения V , скорост­ным напором и избыточным давлением ∆ P.

УВ приводят к поражений людей как за счет воздействия ∆Р, так и вследствие ударов обломками разрушаемых зданий и сооруже­ний, осколками стекла и другими вторичными НФ. Крайне тяжелые, ведущие к смертельному исходу, контузии и травмы (разрывы внут­ренних органов, переломы костей, внутренние кровотечения и т.п.) вызываются воздействием ∆Рф > 100 кПа, тяжелые контузии и травм - при ∆Рф = 60.. 100 кПа, поражения средней тяжести - при ∆Рф = 40...60 кПа, легкие - при ∆Рф = 20...40 кПа.

Воздействие ∆Рф на здания и сооружения вызывает следующие степени разрушения (для зданий с металлическим каркасом): пол­ное разрушение; сильные разрушения; разрушение остекления.

1.4.5. Воздействие на человека электрических, магнитных и электромагнитных полей и излучений, их нормирование. К перечис­ленным НФ относятся постоянные магнитные и электростатические поля (ПМП и ПЭСП соответственно), электромагнитные излучения токов промышленной частоты, высокой (ВЧ), ультравысокой (УВЧ) и сверхвысокой (СВЧ) частот, видимый свет, ультрафиолетовое (УФО) и инфракрасное (ИК) излучения, электромагнитные ионизирующие излучения. Значение видимого света для производственной деятель­ности и ИК излучения для теплового состояния человека рассмот­рены выше, а электромагнитные ионизирующие излучения будут рас­смотрены в п.п. 1.4.6 вместе с другими видами ионизирующей ра­диации (ИР).

1.4.5.1. ПМП и ПЭСП могут быть естественными и антропогенными. Из всех естественных полей наиболее существенным является ПМП Земли. Хорошо известны его биологические эффекты (ориента­ция семян, перелеты птиц и др.), В отношении человека установ­лена четкая связь между магнитными бурями и вспышками инфекци­онных болезней, между колебаниями напряженности ПМП и частотой инфарктов миокарда и т.д. Только 10...15% людей не реагируют на изменения ПМП, а большинство реагирует сразу же или за (спустя) 2…3 дня.

Антропогенные ПМП возбуждаются электромагнитами, соленоида­ми, импульсными установками полупериодного или конденсаторного типа, литыми и металлокерамическими магнитами. Воздействие ПМП на работающих зависит от напряженности (Н), удаления РМ от ис­точника ПМП и режима труда. СН 1742-77 установлен ПДУ.

ПСЭП или поле неподвижных электрических зарядов возникает в процессе статической электризации при деформации, дроблении веществ, относительном перемещении двух нахо­дящихся в контакте тел, слоев жидких и сыпучих материалов. ПЭСП характеризуется электрической напряженностью Е, В/м. ПЭСП создаются также при эксплуатации электроустановок (ЭУ) высокого напряжения постоянного тока.

СН 1757-77 и ГОСТ 12.1.045-84 устанавливают ПДУ поля .

1.4.5.2. Источниками ЭП токов промышленной частоты являются токоведущие части действующих ЭУ, ЛЭП, открытые распределитель­ные устройства. Воздействие этих ЭП возможно при ремонтных ра­ботах в местах повышенной напряженности поля. При оценке УТ необходимо учитывать электрическую и магнитную напряженности поля (соответственно Н, А/м и Е, В/м). Но так как пороговое действие магнитного поля возможно лишь при Н > 160...200 А/м, а фактичес­кая Н не превышает 20...25 А/м, то при оценке опасности фактора ограничиваются только Е.

Допустимые уровни Е ЭП токов промышленной частоты установле­ны ГОСТ 12.1.002-84.

1.4.5.3. Ультрафиолетовое излучение (УФО)- это электромаг­нитные волны с длиной волны 200...400 нм. Интенсивное УФО наб­людается при электросварке, работе плазменных установок, неко­торых типов газоразрядных ламп и ртутно-кварцевых горелок. УФО обладает выраженным биологическим действием.

Нормативы максимального УФО приведены в указаниях к проекти­рованию и эксплуатации установок искусственного УФО и гигиенических требованиях к таким установкам (СH 1158-74 и СН 1154-78).

1.4.5.4. ЭМП ВЧ занимают диапазон 3 кГц...30 МГц, УВЧ - 30...300 МГц и СВЧ -      300 МГц...300 ГГц.

Вокруг любого источника такого излучения выделяют зоны индук­ции (ближнюю), интерференции (промежуточную) и волновую. Радиус первой зоны не превышает длины волны, деленной на 2π; начало волновой зоны находится на удалении большем, чем длина волны, помноженная на 2π. В зонах индукции и интерференции воздейст­вуют различные по величине электрические и магнитные поля. Ин­тенсивность излучения в этих зонах оценивается раздельно величи­нами Е и Н, составляющих поля в В/м и А/м.

В основе биологического воздействия ЭМП радиочастот лежит прежде всего избирательный локальный нагрев тканей и органов с плохой терморегуляцией (хрусталик и стекловидное тело глаза, семенники и т.д.).

ГОСТ 12.1.006-84* устанавливает ПДУ ЭМП радиочастот в зависи­мости от частотного диапазона f .

I.4.5.5. Лазерное излучение вызывает оптический квантовый генератор, создающий излучение высокой направленности и плотнос­ти энергии. Основными характеристиками лазеров являются интен­сивность излучения, определяемая по величине энергий или мощнос­ти выходного пучка и выраженная в Дж или Вт, длительность и час­тота повторения импульсов.

В СН 2392-81 и ГОСТ 12.1.040-83 в зависимости от степени опасности для персонала вое лазеры делятся на 4 класса.

Наличие конкретных опасных и вредных факторов при эксплуата­ции лазеров 1...4 классов указано в ГОСТ 12.1.040-83.

ПДУ облучения людей установлены СН 2392-81 с учетом режима работы лазеров (непрерывный, моноимпульсный или импульсно-периодический).

1.4.5.6. Электромагнитный импульс ядерного взрыва. При ядер­ных взрывах в результате взаимодействия γ-излучения с атомами и молекулами среды, приводящего к ионизации, возникают кратко­временные (практически исчезающие уже через 8∙10-2) электри­ческие и магнитные поля, которые и представляют собой электромагнитный импульс (ЭМИ) ядерного взрыва.

1.4.5.7. Широкополосное излучение большой мощности, которое создается светящейся областью ядерного взрыва, включает в себя помимо видимого света УФО и ИК. Длительность его воздей­ствия зависит от мощности взрыва (от 3 с при мощности 20 кт до 10 с зри мощности 1 Мт), а поражающее действие характеризуется световым импульсом (СИ), т.е. отношением количества световой энергии к площади поверхности, расположенной перпендикулярно распространенно световых лучей.

1.4.6. Воздействие на человека ионизирующей радиации (ИР), ее нормирование. Излучения, вызывающие в среде образование электрических зарядов разных знаков (ионов), называют ионизирующей радиацией (ИР). ИР может быть корпускулярной (a -лучи - поток ядер гелия, b -лучи - поток электронов, нейтронное излучение - поток нейтронов я т.д.) и электромагнитной ( g -излучение, возникаю­щее при ядерных превращениях; рентгеновское излучение, возника­ющее при торможений заряженных частиц в ускорителях электронов, рентгеновских трубках и т.д.). Эти излучения характеризуются про­никающей и ионизирующей способностями.

Предельно допустимые дозы (ПДД) и предельные дозы (ПД) ИР ус­тановлены "Нормами радиационной безопасности НРБ 76/87" и "Ос­новными санитарными правилами работы с радиоактивными вещества­ми и источниками ионизирующих излучений ОСП 72/87".

1.4.7. Воздействие на организм человека электротока, его нормирование зависят от вида поражения факторов среды и т.д.

1.4.7.1. Виды поражений электротоком. Различают термическое, электролитическое, биологическое и механическое воздействия электротока.

Все электротравмы разделяют также на местные (20%), общие (25%) и смешанные (55%).

1.4.7.2. Факторы, определяющие опасность поражения электро­током. На тяжесть поражения человека электротоком влияют харак­теристики самого тока (сила тока I , его род - постоянный или переменный и частота тока), а также ряд неэлектрических факто­ров ( электросопротивление организма, путь тока в теле человека, время воздействия тока, температурные условия и еще ряд свойств и параметров организма).

    ГОСТ 12.1.013-78 и ПУЭ устанавливают следующие категории помещений по электроопасности: I - без повышенной опасности, II - с повышенной опасностью, III - особо опасные.

По электроопасности ЭУ делят на 2 группы - с U до 1000 В и выше

 1000 В. При этом выделяют ЭУ с малым U - до 42 В.

1.4.7.3. Нормирование электротока . Предельно допустимые (ПД) напряжения прикосновения и силы тока Iч установлены ГОСТ 12.1.038-82*.

1.4.7.4. Условия поражения человека электротоком. Поражение человека электротоком происходит только при включении его в электроцепь. Возможны следующие случаи включения человека в электроцепь: 1) прикосновение к токоведущим частям ЭУ (одно- или двухфазное прикосновение), из-за которого происходит до 56% всех электротравм; 2). прикосновение к частям ЭУ, оказавшимся под U из-за повреждения изоляции фаз или по другим причинам (происходит до 40% всех электротравм); 3) прикосновение к двум точкам земли, имеющим разные потенциалы (происходит до 4% всех электротравм). В основе этих включений (кроме двухфазного) ле­жат явления, возникающие при стекании тока в землю.

1.4.7.5. Основные причины поражения электротоком и первая помощь пострадавшему . Основные причины поражения электротоком под­разделяются на: 1) технические (в среднем 24,7%); 2) организационно-технические (в среднем 59,7%); 3) организационные (в среднем 46,3%); 4) организаци­онно-социальные (в среднем 25,8%).

Первая помощь пострадавшему.

1.4.8. Сочетанное действие НФ . Варианты сочетанного действия различных химических факторов.  Аналогичные явления суммации, потенциирования и антагонизма установлены и для ряда физических НФ. Так, однонаправленное действие инфразвука, шума и ультразвука приводят к тому, что отрицательные последст­вия высокого уровня шумов увеличиваются при одновременном воздействии инфра- и/или ультразвука. Такой же взаимно отягощающий эффект характерен для сочетанного воздействия шума и вибрации.

 

 



Дата: 2018-12-28, просмотров: 226.