Реакции эндокринной системы на кратковременный цикл физической нагрузки иллюстрирует табл. 6.3. В ней приведены гормоны, которые, как считают, играют главную роль в спортивной и мышечной деятельности.
ровками. Это привело к тому, что некоторые спортсмены стали использовать тестостерон и другие анаболические стероиды для искусственного увеличения мышечной массы. Такое направление использования тестостерона и других ана-болических стероидов подробно рассматривается в главе 14.
Яичники выделяют эстрогены и прогестеро-ны. Эстрогены обеспечивают развитие женских вторичных половых признаков, пролиферативную фазу менструального цикла, овогенез, овуляцию и многие изменения во время беременности. Про-гестерон обеспечивает секреторную (лютеальную) фазу менструального цикла, готовит матку к беременности, а молочные железы к лактации.
ВЛИЯНИЕ ГОРМОНОВ НА ОБМЕН ВЕЩЕСТВ И ЭНЕРГООБЕСПЕЧЕНИЕ
Как мы уже знаем из двух предыдущих глав, для удовлетворения повышенных потребностей организма в энергии при мышечной деятельности необходимо повышенное количество глюкозы для утилизации мышцами. Вспомним, что глюкоза содержится в организме в виде гликогена, в основном в мышцах и печени. Для высвобождения глюкозы необходимо увеличение интенсивности гликогенолиза. Освободившаяся из печени глюкоза попадает в кровь и циркулирует по всему телу, поэтому ее могут использовать активные ткани. Глюконеогенез может привести к повышению уровней глюкозы в плазме. Рассмотрим гормоны, участвующие как в гликогенолизе, так и в глюконеогенезе.
Содержание глюкозы в плазме
Действия четырех гормонов направлены на увеличение количества циркулирующей в плазме глюкозы:
123
Таблица 6.3. Гормональные изменения, обусловленные физическими нагрузками
Гормон | Реакция на нагрузку | Взаимосвязь | Возможное значение |
Катехоламины | Увеличение | Более значительное увеличение содер | Повышенное содержание |
жания при более высокой интенсивнос | глюкозы в крови | ||
ти, норадреналин > адреналин, меньшее | |||
увеличение после тренировок | Не известно | ||
Гормон роста | и | Больше увеличивается у неподготовленных | |
людей; быстрее снижается после прекра | |||
щения нагрузки у подготовленных людей | |||
АКТГ-кортизол | (( | Более значительное увеличение коли | Повышенный глюконеогенез |
чества при более высокой интенсив-ности | в печени (почках) | ||
нагрузки; меньшее увеличение после | |||
субмаксимальных нагрузок | |||
Тиреотропин- | (( | Повышает обмен тироксина вследствие | Не известно |
тироксин | тренировок; токсические воздействия не | ||
наблюдались | |||
Лютеинизирующий | Не известна | Не известна | " |
гормон | |||
Тестостерон | Увеличение | и | и |
Эстрадиол-прогесте- | Увеличение | Повышается во время лютеальной фазы | Не известно |
рон | цикла | ||
Инсулин | Снижение | Меньшая степень снижения после тре | Пониженный стимул к |
нировок | использованию глюкозы крови | ||
Глюкагон | Увеличение | Меньшая степень увеличения после тре | Повышенный уровень глюкозы |
нировок | крови благодаря гликогенолизу | ||
и глюконеогенезу | |||
Ренин-ангиотензин- | «' | Такая же степень увеличения у крыс | Задержка натрия с целью |
альдостерон | после тренировок | поддержания объема плазмы | |
Антидиуретический | Возможно | Не известна | Задержка воды с целью |
гормон | увеличение | поддержания объема плазмы | |
Кальциотонин | Не известна | и | Необходим для обеспечения |
нормального развития костей | |||
Эритропоэтин | «с | " | Может играть важную роль в |
повышении эритропоэза | |||
Простагландины | Возможно | Могут увеличиваться в ответ на про | Могут обеспечивать локальное |
увеличение | должающиеся изометрические сокра | расширение сосудов | |
щения |
1) глюкагон;
2) адреналин;
3) норадреналин;
4) кортизол.
Концентрация глюкозы в плазме во время мышечной деятельности зависит от соотношения между потреблением ее мышцами и выделением печенью. В состоянии покоя выделению глюкозы из печени способствует глюкагон, обеспечивающий расщепление гликогена печени и образование глюкозы из аминокислот. Во время физической нагрузки секреция глюкагона усиливается. Мышечная активность также повышает интенсивность выделения катехоламинов из мозгового вещества надпочечников, и эти гормоны (адреналин и норадреналин) совместно с глюкагоном обеспечива
ют дальнейшее усиление гликогенолиза. Установлено, что во время физической нагрузки уровни кортизола также повышаются. Кортизол, в свою очередь, усиливает катаболизм белков, освобождая аминокислоты для глюконеогенеза, который реализуется в печени. Таким образом, все четыре гормона увеличивают количество глюкозы в плазме, усиливая процессы гликогенолиза и глюконеогенеза. Кроме того, гормон роста повышает мобилизацию свободных жирных кислот и снижает клеточное потребление глюкозы, вследствие чего клетки используют меньше глюкозы (больше глюкозы остается в системе кровообращения), а гормоны щитовидной железы способствуют катаболизму глюкозы и метаболизму жиров.
Количество глюкозы, выделяемой печенью,
124
зависит от интенсивности и продолжительности физической нагрузки. С увеличением интенсивности увеличивается выделение катехоламинов. Это может вынудить печень выделять больше глюкозы, которую используют активные мышцы. На рис. 6.8 показан уровень глюкозы после кратковременной нагрузки "взрывного" типа. К концу 60-секундной спринтерской нагрузки (езда на велосипеде) уровень глюкозы в плазме превышает ее содержание в состоянии покоя, что свидетельствует о том, что количество выделяемой глюкозы превышает ее потребление. Почему не используется это дополнительное количество глюкозы?
Чем выше интенсивность физической нагрузки, тем больше выделяется катехоламинов. Следовательно, значительно повышается интенсивность гликогенолиза. Этот процесс происходит не только в печени, но и в мышцах. Глюкоза, выделяемая печенью, поступает в кровь и становится доступной мышцам. Однако мышцы имеют и другой доступный источник глюкозы — свой собственный гликоген. Мышца использует свои запасы гликогена, прежде чем использовать глюкозу плазмы во время кратковременной физической нагрузки "взрывного" типа. Глюкоза, выделяемая печенью, используется не сразу, а остается в системе кровообращения, повышая уровень глюкозы в плазме. После завершения физической нагрузки уровни глюкозы в плазме снижаются по мере того, как глюкоза поступает в мышцы, восполняя истощенные запасы мышечного гликогена.
Во время физической нагрузки продолжительностью несколько часов интенсивность выделения глюкозы печенью максимально соответству-
Рис. 6.8. Изменение содержания глюкозы в крови в течение 1 мин спринта на велосипеде
ет потребностям мышцы, и уровень содержания глюкозы в плазме соответствует или слегка превышает ее содержание в состоянии покоя. При увеличении потребления глюкозы мышцей интенсивность ее выделения печенью также повышается. В большинстве случаев уровни глюкозы в плазме не снижаются до тех пор, пока не истощатся запасы гликогена в печени. В этот момент значительно увеличивается количество глюкаго-на. Глюкагон вместе с кортизолом усиливают глю-конеогенез, обеспечивая организм большим количеством энергии.
Рис. 6.9 иллюстрирует изменение уровней содержания адреналина, норадреналина, глюкаго-на, кортизола и глюкозы в плазме во время езды на велосипеде в течение 3 ч. Хотя гормональная регуляция глюкозы при такой продолжительной физической нагрузке не нарушается, содержание гликогена в печени может существенно понизиться. В результате интенсивность выделения глюкозы печенью окажется меньше интенсивности ее потребления. В таких условиях уровень глюкозы может снизиться, несмотря на значительное гормональное стимулирование. В этот момент главную роль в сохранении уровней глюкозы плазмы может сыграть глюкоза, потребляемая во время мышечной деятельности.
Утилизация глюкозы мышцами
Простое выделение достаточного количества глюкозы в кровь не означает, что мышечные клетки получат достаточно глюкозы, чтобы удовлетворить энергетические потребности организма. Глюкоза не просто должна поступать в эти клетки, а потребляться ими. Этот процесс основан на действии инсулина. Как только глюкоза поступает в мышцу, инсулин обеспечивает ее транспорт в волокна.
Удивительно (рис. 6.10), но уровни инсулина плазмы снижаются при продолжительной субмаксимальной нагрузке несмотря на увеличение концентрации глюкозы в плазме и ее более интенсивное использование мышцами. Это
125
явное противоречие между концентрацией инсулина в плазме и потребностью мышцы в глюкозе, напоминает нам, что активность гормонов не всегда определяется их содержанием в крови. В данном случае чувствительность клетки к инсулину может быть такой же важной переменной, как и количество циркулирующего в крови гормона. Физические нагрузки могут усиливать процесс связывания инсулина рецепторами мышечного волокна [5, б]. Мышечные сокращения, непонятно по каким причинам, оказывают инсулиноподобное воздействие при рекруитировании рецепторов: на клетках появляется больше рецепторов и их активность может повышаться, тем самым снижая потребность в значительном количестве инсулина в плазме для транспорта глюкозы через оболочку клетки. Это очень важно, поскольку во время мышечной деятельности четыре гормона пытаются выделить глюкозу из мест ее хранения и образовать новую глюкозу. Их действию противостоит повышенное количество инсулина, направленное на предотвращение чрезмерного уменьшения количества глюкозы.
РЕГУЛЯЦИЯ МЕТАБОЛИЗМА ЖИРОВ ВО ВРЕМЯ ФИЗИЧЕСКОЙ НАГРУЗКИ
Хотя жиры, как правило, в меньшей степени, чем углеводы, удовлетворяют энергетические потребности организма во время физической нагрузки, мобилизация и окисление свободных жирных кислот играет важную роль для выполнения физической работы, требующей проявления выносливости. Во время такой работы запасы углеводов истощаются и энергетические потребности организма в большей степени удовлетворяются за счет окисления жиров. При пониженных запасах
углеводов (низкие уровни глюкозы плазмы и мышечного гликогена) эндокринная система может ускорить окисление жиров (липолиз), тем самым удовлетворяя энергетические потребности мышц. Процесс липолиза интенсифицируется также в результате повышения уровней адреналина и нор-адреналина.
Вспомним, что свободные жирные кислоты хранятся в форме триглицеридов в жировых клетках и внутри мышечных волокон. Тригли-цериды должны расщепиться, чтобы высвободить свободные жирные кислоты, которые затем транспортируются в мышечные волокна. Интенсивность потребления свободных жирных кислот активной мышцей характеризуется высокой степенью корреляции с концентрацией свободных жирных кислот в плазме. Повышение их концентрации приводит к более интенсивной клеточной утилизации свободных жирных кислот. Мы можем предположить, что повышенная концентрация свободных жирных кислот в плазме усиливает их окисление, поскольку повышенное клеточное потребление свободных жирных кислот способствует более сильному окислению [I]. Следовательно, интенсивность расщепления триглицеридов может частично определять интенсивность утилизации мышцами жиров в качестве источника энергии во время физической нагрузки.
Триглицериды расщепляются до свободных жирных кислот с помощью специального фермента — липазы, активируемой, по меньшей мере, четырьмя гормонами: кортизолом; адреналином;
норадреналином и гормоном роста.
Помимо того, что кортизол играет важную роль в глюконеогенезе, он также ускоряет мобилизацию и использование свободных жирных кислот в качестве источника энергии во время выполнения физической нагрузки. При продолжительной физической нагрузке (рис. 6.11) уровни кортизо-ла в плазме достигают пика через 30 — 45 мин мышечной деятельности, а затем снижаются почти до нормальных. В то же время концентрация свободных жирных кислот продолжает повышаться в течение всего периода выполнения физической нагрузки. Это означает, что другие гормоны должны продолжать активировать липазу. Гормоны, которые продолжают этот процесс, — кате-холамины и гормон роста. Как видно из рис. 6.11,6, содержание этих гормонов в плазме увеличивается в течение всего периода выполнения физической нагрузки, постепенно усиливая выделение свободных жирных кислот и окисление жиров. Такие же воздействия оказывают гормоны щитовидной железы.
Таким образом, эндокринная система играет очень большую роль в регуляции образования АТФ во время мышечной деятельности, а также обеспечивает контроль равновесия между метаболизмом углеводов и жиров.
126
В ОБЗОРЕ...
1. Содержание глюкозы в плазме повышается вследствие комбинированного воздействия глюкагона, адреналина, норадреналина и кор-тизола. Эти гормоны обеспечивают гликогено-лиз и глюконеогенез, тем самым увеличивая количество глюкозы, которую можно использовать в качестве источника энергии. Эти же функции выполняют гормон роста и гормоны щитовидной железы.
2. Инсулин помогает выделенной глюкозе поступить в клетки, где она может быть использована для образования энергии. Однако уровень инсулина снижается при продолжительной физической нагрузке, свидетельствуя о том, что физическая нагрузка сама по себе способствует действию инсулина. Таким образом, при выполнении физической нагрузки требуется меньше гормонов, чем в состоянии покоя.
3. При пониженных запасах углеводов организм переходит на использование жиров в качестве источника энергии. Этому процессу способствуют кортизол, адреналин, норадреналин и гормон роста.
4. Кортизол ускоряет процесс липолиза, выделяя в кровь свободные жирные кислоты, которые могут быть использованы клетками для образования энергии. Уровень кортизола достигает пика, а затем при продолжительной физической работе возвращается к исходному уровню. Когда это происходит, роль кортизола начинают выполнять ка-техоламины и гормон роста.
Дата: 2018-12-28, просмотров: 281.