Решение линейных систем с помощью обратной матрицы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Рассмотрим линейную систему (2.3):  и введем следующие обозначения:

- матрица системы, - столбец неизвестных,

- столбец свободных членов. Тогда систему (2.3) можно записать в виде матричного уравнения: АХ = В.                                                    (3.1)

Пусть матрица А – невырожденная, тогда существует обратная к ней матрица

Умножим обе части равенства (3.1) слева на  Получим

            

Но  тогда , а поскольку          (3.2)

Итак, решением матричного уравнения (3.1) является произведение матрицы, обратной к А, на столбец свободных членов системы (2.3).

 

Пример: Вернемся к системе

 Для нее    Найдем :


   Следовательно,

 

 

Раздел II. Введение в математический анализ

 

 Тема 1. Теория пределов

Определение 1.1.: Число А называется пределом функции y=f(х) при х, стремящемся к  а, если для любой последовательности чисел х1, х2, х3, …, .х n ,… сходящейся к числу а, следует, что последовательность значений функции f(х1), f(х2),…, f(х n )…  сходится к числу А.

Предел функции в точке а обозначается  

.

Основные теоремы о пределах

1.

2.

3.

4.

5.

6.

! Все правила имеют смысл, если пределы функций  и  существуют.

Используются также следующие пределы:

   

(первый замечательный предел);

 

(второй замечательный предел).

 

Техника вычисления пределов

При вычислении предела элементарной функции f(x) приходится сталкиваться с двумя существенно различными типами примеров.

· Функция f ( x ) определена в предельной точке x = a . Тогда

.

· Функция f(x) в предельной точке x = a не определена или же вычисляется предел функции при x →∞. Тогда вычисление предела требует в каждом случае индивидуального подхода.

Необходимо помнить, что

, , , , , .

Более сложными случаями нахождения предела являются такие, когда функция f(x) в точке x = a или при x→∞ представляет собой неопределенность (типа , , , , , , ).

При вычислении пределов при основные теоремы о пределах сохраняют силу и, кроме того, используются правила:

а) чтобы раскрыть неопределенность типа , необходимо числитель и знаменатель дроби разделить на наибольшую степень переменной;

б) чтобы раскрыть неопределенность типа , необходимо числитель и знаменатель дроби разделить на наименьшую степень переменной ;

в) чтобы раскрыть неопределенность типа , иногда достаточно числить и знаменатель дроби разложить на множители и затем сократить дробь на множитель, приводящий к неопределенности;

г) чтобы раскрыть неопределенность типа , зависящую от иррациональности, достаточно перевести иррациональность из числителя в знаменатель или из знаменателя в числитель и сократить на множитель, приводящий к неопределенности;

д) чтобы раскрыть неопределенность типа , необходимо числитель и знаменатель дроби одновременно умножить на сопряженное выражение и тем самым свести к неопределенности вида  или .

Вычислить пределы функций:

Пример 1:

Пример 2:

Пример 3:

 =

Пример 4:

 

Пример5:

 Пример 6:

Пример 7:

. Теорему о пределе частного здесь применить нельзя, так как числитель и знаменатель дроби конечного предела не имеют. В данном случае имеем неопределённость вида . Разделим числитель и знаменатель дроби на высшую степень х (в данном случае на х2 ), а затем воспользуемся теоремами о пределах функций:

.

Здесь мы воспользовались следующим равенством:  (а – любое число).

Пример 8:

Пример 9:

Пример 10:

Дата: 2018-12-28, просмотров: 224.