ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ В РАЙОНАХ РАСПРОСТРАНЕНИЯ ЭЛЮВИАЛЬНЫХ ГРУНТОВ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Общие положения

 

8.1.1. К элювиальным грунтам следует относить грунты, образовавшиеся в результате процессов выветривания горных пород на месте их залегания без заметных признаков смещения. С глубиной степень выветрелости постепенно снижается, и они переходят в трещиноватую материнскую горную породу. Граница между элювиальными грунтами и подстилающей материнской породой неровная, с карманами, нечетко выраженная и может быть установлена, как правило, условно. Поэтому в настоящем разделе рассматривается не только элювий, но и элювиированные (выветрелые) горные породы под общим термином кора выветривания.

8.1.2. Следует различать коры выветривания современные и древние. Первые связаны с современными климатическими условиями и залегают с поверхности, вторые — с палеоклиматическими условиями минувших геологических эпох и могут залегать как с поверхности, так и на разных глубинах под покровом более молодых отложений. В некоторых случаях в разрезе может быть встречена не одна, а несколько кор выветривания.

8.1.3. Необходимо различать два основных вида выветривания: физическое (или механическое) и химическое (включая биохимическое) и, соответственно, два основных типа кор выветривания, заметно различающихся по своему строению, составу и физико-механическим свойствам.

8.1.4. Физическое выветривание, характерное для современного холодного и умеренного климата, вызывается в основном колебаниями температуры, замерзанием и оттаиванием воды в трещинах разного размера (включая микротрещины), что приводит к дезинтеграции горных пород, вначале — на крупные глыбы, затем — на щебень, дресву и отдельные минеральные зерна, представленные в основном фракциями песка и пыли (алеврита). Вторичные глинистые минералы образуются в небольших количествах, за исключением случаев, когда выветриванию подвергаются породы, содержащие их в своем составе (глинистые сланцы, аргиллиты, глинистые песчаники, глинистые алевролиты, мергели). Обломочный материал, образующийся при физическом выветривании, сохраняет минеральный состав материнской породы и значительную прочность благодаря унаследованности структурных связей.

В строении кор выветривания этого типа следует выделять:

а) зону тонкого дробления, или дисперсную, состоящую в основном из песчано-алевритового материала;

б) мелкообломочную, состоящую из дресвы и щебня;

в) глыбовую, состоящую из грубообломочного материала.

Мощность таких кор выветривания обычно не превышает нескольких метров,

8.1.5. Химическое выветривание сцементированных осадочных пород (песчаники, алевролиты), а также в некоторых других осадочных породах с кристаллическими связями (доломиты, некоторые разности известняков, писчий мел) вызывает вначале ослабление структурных связей, что снижает прочность породы, а затем приводит к частичному или полному их разрушению с распадом породы на отдельные минеральные зерна и образованием песчаного или алевритового материала. Химическое выветривание магматических и метаморфических пород сопровождается глубокими химическими преобразованиями первичных породообразующих минералов с частичным или полным их замещением вторичными глинистыми минералами.

Хемогенные коры выветривания широко развиты в пределах древних горных сооружений и местами на плитах и платформах. Особенно большой мощностью они обладают на Урале.

В строении хемогенных кор выветривания на метаморфических и изверженных породах следует выделять:

а) зону бесструктурного элювия, полностью утратившего первичные структурные связи и представленного песками, супесями, суглинками, часто с разным содержанием дресвяно-щебенистого материала;

б) зону структурного элювия или сапролита с сохранившимися, но сильно ослабленными структурными связями, прочность которых нарастает с глубиной. Сапролиты сохраняют сплошность, присущую материнским породам, их текстурные, а в значительной степени и структурные особенности, но имеют малую прочность. Они разламываются и растираются руками, разрабатываются лопатой, иногда с применением ударных инструментов;

в) зону выветрелой породы или рухляка, разбитого трещинами на отдельные блоки. Степень выветрелости постепенно снижается от стенок блоков, где порода превращена в сапролит, к их центральной части, где она приближается по прочности к материнской породе. Рухляк требует при разработке применения ударных инструментов;

г) зону трещиноватой горной породы, со следами выветривания лишь по стенкам трещин (разборная скала).

8.1.6. Встречаются также коры выветривания переходного типа, образовавшиеся как в результате механической дезинтеграции породы, так и под воздействием химического выветривания. Они состоят в основном из обломочного материала разной крупности (от алеврито—песчаного до щебенисто-глыбового) с различной степенью выветрелости. Полный профиль коры выветривания в этом случае будет зависеть от возможности и скорости удаления продуктов выветривания.

Зональное строение элювиальной толщи может быть нарушено, если подвергающиеся выветриванию исходные породы имеют слоистое строение, дислоцированы или рассечены жилами и дайками, обладающими различной устойчивостью к выветриванию.

8.1.7. При проведении изысканий в районах развития элювиальных грунтов необходимо учитывать, что химическое выветривание магматических, метаморфических и осадочных пород сопровождается широким комплексом химических, физико-химических и физических процессов (окисление, растворение и вынос, суффозия, гидратация и др.), что приводит к формированию сапролитов и рухляков заметно различающихся по минеральному составу, структуре и инженерно-геологическим свойствам. Наряду с относительно плотными разностями встречаются пористые, иногда макропористые. Состав вторичных глинистых минералов может меняться от слабо гидрофильных (каолинит, гидрослюды) до сильно гидрофильных (монтмориллонит). Соответственно, среди сапролитов встречаются как просадочные, так и набухающие разности.

8.1.8. Коры выветривания делятся на площадные и линейные. Последние приурочены к зонам разрывных нарушений.

Мощность площадных кор выветривания, сформировавшихся в платформенных условиях, изменяется от нескольких метров до десятков метров. В зонах, подвергшихся ледниковой экзарации и размыву талыми ледниковыми водами, они уничтожены почти полностью. Наиболее мощные коры выветривания (30-50 м) приурочены к платформенным структурам типа валов, флексур, куполов, где породы подвергались интенсивному трещинообразованию. В горных районах с блоковой тектоникой мощность элювиальных отложений на приподнятых блоках не превышает нескольких метров, в пределах опущенных блоков — достигает нескольких десятков метров. Мощность линейных кор выветривания измеряется десятками, а иногда и сотнями м (на Урале до 100-150 м).

8.1.9. При изысканиях в платформенных условиях необходимо учитывать, что коры выветривания связаны в основном с осадочными породами: карбонатными (доломитами, известняками, писчим мелом), реже — с песчаниками, алевролитами и аргиллитами.

Элювий на доломитах, представленный тонким алевритом (доломитовой мукой), с глубиной постепенно обогащается песчано-щебенистым, ниже — шебенисто-глыбовым материалом. Залегая с поверхности, доломитовая мука слабо уплотнена и нередко обладает просадочными свойствами. Древние толщи доломитовой муки, вскрываемые на разных глубинах под более молодыми отложениями, могут иметь разную степень уплотнения.

На переходных известняково-доломитовых разностях пород и известняках элювий характеризуется более грубым составом и представлен, в основном, песчаным, дресвяным и щебенистым материалом.

На известняках элювий отличается неоднородным составом (от глыб до алевритового материала) и большой изменчивостью по площади. На глинистых известняках формируются элювиальные карбонатные глины, содержащие обломки выветрелого известняка.

Элювий писчего мела представлен тонким алевритом, ниже по разрезу сохраняющим в ослабленном виде первичные структурные связи, прочность которых нарастает с глубиной. Выветрелый мел часто обладает резко выраженной пространственной неоднородностью (переслаивание относительно прочных и слабых разностей, полностью утративших структурную прочность). При разрушении первичных структурных связей и насыщении водой меловой элювий размокает, теряет прочность и приходит в плывунное состояние.

Элювий терригенных пород представлен суглинками и супесями с крупнообломочными включениями, содержание которых увеличивается вниз по разрезу.

8.1.10. При изысканиях в горных районах следует учитывать, что коры выветривания, формирующиеся на осадочных, метаморфических и магматических породах разного типа, отличаются большим разнообразием состава, сложным строением и значительной пространственной изменчивостью, в соответствии с составом и условиями залегания материнских пород и наличием разрывных нарушений.

На песчаниках образуются пески разной крупности, на аргиллитах и глинистых сланцах формируются глины, обогащенные на глубине дресвой и плитчатым щебнем.

На гранитоидах под небольшим по мощности слоем бесструктурного элювия песчано-глинистого состава залегают сапролиты, представленные глинистыми лесками (песчанистыми глинами), сохранившими в той или иной степени первичные структурные связи. С глубиной они переходят в рухляк, а еще глубже — в слабо выветрелую трещиноватую породу.

На основных магматических породах элювий имеет глинистый состав, на ультраосновных — представлен охрами (сложной смесью гидроокислов железа).

8.1.11. При изучении кор выветривания необходимо учитывать влияние гидрогеологических условий: нередко под слабо выветрелыми породами зоны аэрации залегают сильно выветрелые грунты, приуроченные к зоне циркуляции подземных вод.

8.1.12. Элювиальные грунты следует характеризовать следующими показателями:

гранулометрическим составом (с учетом содержания обломочного материала и его роли в формировании структуры и деформационно-прочностных свойств грунта);

пределом прочности на одноосное сжатие ( ) в водонасыщенном состоянии и при естественной влажности;

коэффициентом размягчаемости — ,

коэффициентом выветрелости — ;

показателями специфических свойств — просадочности, набухания, растворимости и т.д. (при их наличии)

8.1.13. Классификацию тонкозернистых элювиальных бесструктурных грунтов преимущественно глинистого состава, обладающих пластическими свойствами (продукты выветривания аргиллитов, глинистых сланцев, мергелей, глинистых песчаников и алевролитов, а также основных эффузивных и интрузивных пород), следует осуществлять согласно действующей классификации глинистых грунтов по ГОСТ 25100-95.

8.1.14. Другие виды бесструктурных элювиальных грунтов, не обладающих пластическими свойствами, следует подразделять по гранулометрическому составу (таблица 8.1) с указанием степени неоднородности.

 

Таблица 8.1

 

Наименование грунта Преобладающие фракции, мм
Глыбовый > 200
Щебенистый 10 - 200
Дресвяный 2 - 10
Песчаный 0,1 - 2
Алевритовый (пыль) < 0,1

 

При высоком содержании разных фракций в названии этих грунтов следует указывать не только преобладающую, но и вторую по содержанию, а иногда и третью фракцию, например, дресвяно-щебенисто-глыбовый грунт.

8.1.15. Глыбовые грунты целесообразно подразделять дополнительно на три вида:

а) бескаркасный — с невысоким содержанием глыбового материала (порядка 10%), деформационно-прочностные свойства которого определяются в основном заполнителем;

б) слабокаркасный — со средним и высоким содержанием глыбового материала (10 — 65%), свойства которого определяются как глыбовым материалом, так и заполнителем;

в) каркасный — с очень высоким содержанием глыбового материала (более 65%), свойства которого определяются глыбовым материалом.

При более детальных описаниях следует уточнять содержание и состав заполнителя, например: «глыбовый грунт с 20% дресвяно-щебенистого заполнителя».

8.1.16. Во всех случаях для крупнообломочного материала (фракций >2 мм) следует указывать его прочность, выделяя три категории: а) слабый или сапролитовый, (разламывается и растирается в руке); б) средней прочности или рухляковый (легко разбивается молотком); в) прочный (с трудом разбивается молотком).

Для более детального подразделения песчаных грунтов следует использовать действующую классификацию песков (ГОСТ 25100-95).

Учитывая, что в составе продуктов выветривания часто преобладают тонкие фракции (доломитовая и известково-доломитовая мука) целесообразно дополнительно выделить группу алевритов (пылеватых грунтов), подразделив их на три вида:

алеврит крупный с преобладанием фракций 0,10-0,01 мм;

алеврит мелкий с преобладанием фракций 0,01-0,005 мм;

алеврит тонкий с преобладанием фракций <0,005 мм.

Учитывая, что свойства различных видов бесструктурного элювия зависят в большой степени от минерального состава частиц (прочность, размягчаемость, размокаемость, растворимость), в наименование грунта следует включать сведения о его минеральном составе, например, «тонкий доломитовый алеврит».

 

Примечание Фракция <0,005 мм отвечает по размеру частиц глинам, однако тонкий алеврит часто не обладает глинистыми свойствами, поэтому употреблять термины «глина», «глинистая фракция» в данном случае не следует.

 

8.1.17. При классификации видов структурного элювия (сапролитов и рухляков) следует учитывать в первую очередь их прочность, используя в качестве классификационного показателя предел прочности грунта на одноосное сжатие , МПа образцов в водонасыщенном состоянии (таблица 8.2) и коэффициент размягчаемости в воде .

Коэффициент размягчаемости в воде  определяется как отношение пределов прочности грунта на одноосное сжатие образцов в водонасыщенном и в воздушно-сухом состоянии.

По степени размягчаемости в воде грунты подразделяются согласно таблице Б.4 ГОСТ 25100-95.

 

Таблица 8.2

 

Наименование видов структурного элювия Предел прочности на сжатие  МПа
Сапролит слабый 5 - 15
Сапролит средней прочности 15 - 30
Сапролит повышенной прочности 30 - 50
Рухляк слабый £ 30
Рухляк средней прочности 30 - 50
Рухляк повышенной прочности > 50

 

Приведенные в таблице определения следует дополнять названием материнской породы (например, «рухляк слабый, гранитный»).

8.1.18. Степень выветрелости элювиальных скальных грунтов характеризуется коэффициентом выветрелости , равным отношению плотности выветрелого грунта к плотности монолитного грунта. Классификация элювиальных скальных грунтов по степени выветрелости приведена в таблице 8.3.

 

Таблица 8.3

 

Наименование элювиальных скальных грунтов

Коэффициент выветрелости  скальных грунтов

при исходных образующих породах

по степени выветрелости Магматических и метаморфических Осадочных сцементированных
Невыветрелые 1 1
Слабовыветрелые 1 - 0,9 1 - 0,95
Выветрелые 0,91 - 0,8 0,96 - 0,85
Сильновыветрелые < 0,8 < 0,85

 

8.1.19. В наименовании элювиальных крупнообломочных грунтов при содержании крупнообломочной фракции более 30% следует дополнительно приводить степень выветрелости обломочного материала в соответствии с таблицей 8.4.

 

 

Таблица 8.4

 

Наименование элювиальных скальных грунтов

Коэффициент выветрелости  скальных грунтов

при исходных образующих породах

по степени выветрелости Магматических и метаморфических Осадочных сцементированных
Слабовыветрелый £ 0,5 £ 0,33
Выветрелый 0,5 - 0,75 0,33 - 0,67
Сильновыветрелый > 0,75 > 0,67

 

Коэффициент выветрелости ( ) определяется по формуле:

 

 ,где

 

K1 отношение массы частиц размером менее 2 мм к массе частиц размером более 2 мм после испытания на истирание в полочном барабане;

K0 — то же в природном состоянии.

В тех случаях, когда значение  непосредственными испытаниями не определено, для предварительных расчетов допускается определять его по данным гранулометрического состава согласно табл. 8.5.

Таблица 8.5.

 

Значения

Процентное содержание по массе фракций размером, мм

> 10 2 - 10 0,1 - 2 < 0,1
< 0,25 54 - 66 25 - 33 9 - 11 0,9 - 4,1
0,25 - 0,50 33 - 44 35 - 40 18 - 22 2,7 - 3,3
0,51 - 0,75 27 - 31 36 - 44 23 - 27 5,6 - 6,4
> 0,75 10 - 14 42 - 46 28 - 32 11 - 13

 

Коэффициент истираемости ( ) крупнообломочной фракции элювиальных грунтов следует определять испытанием на истираемость во врашающемся полочном барабане.

По коэффициенту истираемости крупнообломочные фракции следует подразделять в соответствии с таблицей Б.21 ГОСТ 25100-95.

8.1.20. При составлении программы работ необходимо учитывать следующие основные причины деформаций зданий и сооружений в районах распространения элювиальных грунтов, связанные с недостаточной полнотой и детальностью изысканий:

а) пропуск карманов и линейных кор выветривания, приуроченных к разрывным зонам, разрушенных слабых прослоев, жильных образований, ксенолитов вмещающих пород (при ограничении разведочных работ редкой сеткой буровых скважин);

б) недостаточное внимание к таким свойствам как набухание, просадочность, пучение при промерзании и др. (при неполном комплексе лабораторных исследований);

в) ухудшение свойств сапролитов и рухляков в процессе строительства и эксплуатации зданий и сооружений (за счет промерзания в котлованах, утечек воды и промстоков из коммуникаций, воздействия вибрации и других динамических нагрузок).

 

Дата: 2018-12-28, просмотров: 637.