Маркировка углеродистых инструментальных сталей
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

˗ Данные стали в соответствии с ГОСТ 1435-90 делятся на качественные и высококачественные.

˗ Качественные стали обозначаются буквой У (углеродистая) и цифрой, указывающей среднее содержание углерода в стали, в десятых долях процента.

Например: У7, У8, У9, У10. У7 – углеродистая инструментальная сталь с содержанием углерода около 0.7%

˗ В обозначения высококачественных сталей добавляется буква А (У8А, У12А и т.д.). Кроме того, в обозначениях как качественных, так и высококачественных углеродистых инструментальных сталей может присутствовать буква Г, указывающая на повышенное содержание в стали марганца.

Например: У8Г, У8ГА. У8А – углеродистая инструментальная сталь с содержанием углерода около 0,8%, высококачественная.

˗ Изготовляют инструмент для ручной работы (зубило, кернер, чертилка и т.д.), механической работы на невысоких скоростях (сверла).

 

Маркировка легированных инструментальных сталей

˗ Правила обозначения инструментальных легированных сталей по ГОСТ 5950-73 в основном те же, что и для конструкционных легированных.

Различие заключается лишь в цифрах, указывающих на массовую долю углерода в стали.

˗ Процентное содержание углерода  также указывается в начале наименования стали, в десятых долях процента, а не в сотых, как для конструкционных легированных сталей.

˗ Если же в инструментальной легированной стали содержание углерода составляет около 1.0%, то соответствующую цифру в начале ее наименования обычно не указывают.

Приведем примеры: сталь 4Х2В5МФ, ХВГ, ХВЧ.

˗ 9Х5ВФ – легированная инструментальная сталь, с содержанием углерода около 0,9%, хрома около 5%, ванадия и вольфрама до 1%

 

Маркировка высоколегированных (быстрорежущих)

Инструментальных сталей

˗ Обозначают буквой "Р", следующая  за ней цифра указывает на процентное содержание в ней вольфрама: В отличие от легированных сталей в наименованиях быстрорежущих сталей не указывается процентное содержание хрома, т.к. оно составляет около 4% во всех сталях, и углерода (оно пропорционально содержанию ванадия).

˗ Буква Ф, показывающая наличие ванадия, указывается только в том случае, если содержание ванадия составляет более 2.5%.

Например: Р6М5, Р18, Р6 М5Ф3.

˗ Обычно из этих сталей изготовляют высокопроизводительный инструмент: сверла, фрезы и т.д. (для удешевления только рабочую часть)

Например: Р6М5К2 – быстрорежущая сталь, с содержанием углерода около 1%, вольфрама около 6%, хрома около 4%, ванадия до 2,5%, молибдена около 5%, кобальта около 2%.

 

Практическая часть

Задание для студентов:

1. Запишите название работы, ее цель.

2. Запишите основные принципы маркировки всех групп инструментальных сталей  (углеродистых, легированных, высоколегированных)

Задание по вариантам:

1. Расшифруйте марки сталей и  запишите область применения конкретной марки (т.е. для изготовления чего она предназначена).

 

Задание для 1 варианта  Задание для 2 варианта
1 У8  У9
2 У13А У8А
3 Х  9ХС
4 ХВСГ ХВГ
5 Р18 Р6
6 Р6М5 Р6М5Ф3

 

Практическая работа № 6

 

Тема: «Изучение сплавов на основе меди: латуни, бронзы»

 

Цель работы: ознакомление студентов с маркировкой и областью применения цветных металлов – меди и сплавов на ее основе: латуней и бронз; формирование умения расшифровки маркировки латуней и бронз.

Рекомендации для студентов: прежде чем приступить к выполнению практической части задания, внимательно ознакомьтесь с теоретическими положениями, а также лекциями в вашей рабочей тетради по данной теме.

Ход работы:

1.Ознакомьтесь с теоретической частью.

2.Выполните задание практической части.

 

Теоретическая часть

 

Латуни

Латуни могут иметь в своем составе до 45 % цинка. Повышение содержания цинка до 45 % приводит к увеличению предела прочности до 450 МПа. Максимальная пластичность имеет место при содержании цинка около 37 %.

По способу изготовления изделий различают латуни деформируемые и литейные.

Деформируемые латуни маркируются буквой Л, за которой следует число, показывающее содержание меди в процентах, например в латуни Л62 содержится 62 % меди и 38 % цинка. Если кроме меди и цинка, имеются другие элементы, то ставятся их начальные буквы (О - олово, С - свинец, Ж - железо, Ф - фосфор, Мц - марганец, А - алюминий, Ц - цинк).

Количество этих элементов обозначается соответствующими цифрами после числа, показывающего содержание меди, например, сплав ЛАЖ60-1-1 содержит 60 % меди, 1 % алюминия, 1 % железа и 38 % цинка.

Латуни имеют хорошую коррозионную стойкость, которую можно повысить дополнительно присадкой олова. Латунь ЛО70 -1 стойка против коррозии в морской воде и называется “морской латунью“. Добавка никеля и железа повышает механическую прочность до 550 МПа.

Литейные латуни также маркируются буквой Л, После буквенного обозначения основного легирующего элемента (цинк) и каждого последующего ставится цифра, указывающая его усредненное содержание в сплаве. Например, латунь ЛЦ23А6Ж3Мц2 содержит 23 % цинка, 6 % алюминия, 3 % железа, 2 % марганца. Наилучшей жидкотекучестью обладает латунь марки ЛЦ16К4. К литейным латуням относятся латуни типа ЛС, ЛК, ЛА, ЛАЖ, ЛАЖМц. Литейные латуни не склонны к ликвации, имеют сосредоточенную усадку, отливки получаются с высокой плотностью.

Латуни являются хорошим материалом для конструкций, работающих при отрицательных температурах.

 

Бронзы

Сплавы меди с другими элементами кроме цинка называются бронзами. Бронзы подразделяются на деформируемые и литейные.

При маркировке деформируемых бронз на первом месте ставятся буквы Бр, затем буквы, указывающие, какие элементы, кроме меди, входят в состав сплава. После букв идут цифры, показывающие содержание компонентов всплаве. Например, марка БрОФ10-1 означает, что в бронзу входит 10 % олова, 1 % ф осфора, остальное - медь.

Маркировка литейных бронз также начинается с букв Бр, затем указываются буквенные обозначения легирующих элементов и ставится цифра, указывающая его усредненное содержание в сплаве. Например, бронза БрО3Ц12С5 содержит 3 % олова, 12 % цинка, 5 % свинца, остальное - медь.

Оловянные бронзы При сплавлении меди с оловом образуются твердые растворы. Эти сплавы очень склонны к ликвации из-за большого температурного интервала кристаллизации. Благодаря ликвации сплавы с содержанием олова выше 5 % является благоприятным для деталей типа подшипников скольжения: мягкая фаза обеспечивает хорошую прирабатываемость, твердые частицы создают износостойкость. Поэтому оловянные бронзы являются хорошими антифрикционными материалами.

Оловянные бронзы имеют низкую объемную усадку (около 0,8 %), поэтому используются в художественном литье. Наличие фосфора обеспечивает хорошую жидкотекучесть. Оловянные бронзы подразделяются на деформируемые и литейные.

В деформируемых бронзах содержание олова не должно превышать 6%, для обеспечения необходимой пластичности, БрОФ6,5-0,15. В зависимости от состава деформируемые бронзы отличаются высокими механическими, антикоррозионными, антифрикционными и упругими свойствами, и используются в различных отраслях промышленности. Из этих сплавов изготавливают прутки, трубы, ленту, проволоку.

 

Практическая часть

Задание для студентов:

1.Запишите название и цель работы.

2.Заполните таблицу:

 

Название сплава, его определение Основные свойства сплава Пример маркировки Расшифровка марки   Область применения
         
         

 

 

Практическая работа № 7

 

Тема: «Изучение алюминиевых сплавов»

 

Цель работы:  ознакомление студентов с маркировкой и областью применения цветных металлов – алюминия и сплавов на его основе; изучение особенностей применения алюминиевых сплавов в зависимости от их состава.

Рекомендации для студентов: прежде чем приступить к выполнению практической части задания, внимательно ознакомьтесь с теоретическими положениями, а также лекциями в вашей рабочей тетради по данной теме.

Ход работы:

1.Ознакомьтесь с теоретической частью.

2.Выполните задание практической части.

 

Теоретическая часть

 

Принцип маркировки алюминиевых сплавов. В начале указывается тип сплава: Д - сплавы типа дюралюминов; А - технический алюминий; АК -ковкие алюминиевые сплавы; В - высокопрочные сплавы; АЛ - литейные сплавы.

Далее указывается условный номер сплава. За условным номером следует обозначение, характеризующее состояние сплава: М - мягкий (отожженный); Т - термически обработанный (закалка плюс старение); Н -нагартованный; П – полунагартованный.

По технологическим свойствам сплавы подразделяются на три группы:деформируемые сплавы, не упрочняемые термической обработкой ; деформируемые сплавы, упрочняемые термической обработкой; литейные сплавы. Методами порошковой металлургии изготовляют спеченные алюминиевые сплавы (САС) и спеченные алюминиевые порошковые сплавы (САП).

Деформируемые литейные сплавы, не упрочняемые термической обработкой.

Прочность алюминия можно повысить  легированием. В сплавы, не упрочняемые термической обработкой, вводят марганец или магний. Атомы этих элементов существенно повышают его прочность, снижая пластичность. Обозначаются сплавы: с марганцем - АМц, с магнием - АМг; после обозначения элемента указывается его содержание (АМг3).

Магний действует только как упрочнитель, марганец упрочняет и повышает коррозионную стойкость. Прочность сплавов повышается только в результате деформации в холодном состоянии. Чем больше степень деформации, тем значительнее растет прочность и снижается пластичность. В зависимости от степени упрочнения различают сплавы нагартованные и полунагартованные (АМг3П).

Эти сплавы применяют для изготовления различных сварных емкостей для горючего, азотной и других кислот, мало- и средненагруженных конструкций. Деформируемые сплавы, упрочняемые термической обработкой.

К таким сплавам относятся дюралюмины (сложные сплавы систем алюминий - медь - магний или алюминий - медь - магний - цинк). Они имеют пониженную коррозионную стойкость, для  повышения которой вводится марганец. Дюралюмины обычно подвергаются закалке стемпературы 500оС и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4.5 суток. Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель - авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380-450оС, подвергаются закалке от температуры 500-560оС и старению при 150-165оС в течение 6 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300оС.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

 

Литейные сплавы

 

К литейным сплавам относятся сплавы системы алюминий - кремний (силумины), содержащие 10-13 % кремния. Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне - и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

 

Практическая часть

Задание для студентов:

1. Запишите название и цель работы.

2. Заполните таблицу:

 

Название сплава, его определение Основные свойства сплава Пример маркировки Расшифровка марки   Область применения
         
         

 

Лабораторная работа № 1

 

Тема: «Механические свойства металлов и методы их изучения (твердость)»

 

Цель работы:  изучить механические свойства металлов, методы их изучения.

Ход работы:

1.Ознакомьтесь с теоретическими положениями.

2.Выполните задание преподавателя.

3.Составьте отчет в соответствии с заданием.

 

Теоретическая часть

Твердостью называют способность материала оказывать сопротивление проникновению в него другого тела. При испытаниях на твердость тело, внедряемое в материал и называемое индентором, должно быть более твердым, иметь определенные размеры и форму, не должно получать остаточной деформации. Испытания на твердость могут быть статическими и динамическими. К первому виду относятся испытания методом вдавливания, ко второму - методом ударного вдавливания. Кроме того, существует метод определения твердости царапанием - склерометрия.

По значению твердости металла можно составить представление об уровне его свойств. Например, чем выше твердость, определенная давливанием наконечника, тем меньше пластичность металла, и наоборот.

Испытания на твердость по методу вдавливания состоят в том, что в образец под действием нагрузки вдавливают индентор (алмазный, из закаленной стали, твердого сплава), имеющий форму шарика, конуса или пирамиды. После снятия нагрузки на образце  остается отпечаток, измерив величину которого (диаметр, глубину или диагональ) и сопоставив ее с размерами индентора и величиной нагрузки, можно судить о твердости металла.

Твердость определяется на специальных приборах - твердомерах. Наиболее часто твердость определяют методами Бринелля (ГОСТ 9012-59) и Роквелла (ГОСТ 9013-59).

Существуют общие требования к подготовке образцов и проведению испытаний этими методами:

1. Поверхность образца должна быть чистой, без дефектов.

2. Образцы должны быть определенной толщины. После получения отпечатка на обратной стороне образца не должно быть следов деформации.

3. Образец должен лежать на столике жестко и устойчиво.

4. Нагрузка должна действовать перпендикулярно поверхности образца.

 

Дата: 2018-12-28, просмотров: 1524.