ПРОСТЕЙШАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

РАЗДЕЛ 1. ПОСТОЯННЫЙ ТОК

Электротехника как наука теоретическая и прикладная вначале развивалась на основе постоянного тока, поскольку первыми источниками электрического тока были гальванические элементы. В этот период (1800 — 1850 гг.) были открыты основные закономерности электрических явлений: законы электрической цепи (Г. Ом и Г. Кирхгоф), тепловое действие электрического тока и его практическое использование (Э. Ленц, Д. Джоуль, В. В. Петров), законы электромагнитной индукции и электромагнитных сил (М. Фарадей, Д. Максвелл, Э. Ленц, А. Ампер, Б. С Якоби и др,), электрохимическое действие тока и т.д.

В дальнейшем по мере развития электроэнергетических установок и роста их мощности все больше выявлялся основной недостаток системы постоянного тока — трудность экономичной передачи электрической энергии на значительные расстояния. Возможность передачи электрической энергии па дальние расстояния, большая простота машин и другие преимущества обеспечили системе переменного тока широкое развитие. Однако и теперь, когда переменный ток занимает центральное место в электроэнергетике, многие потребители электрической энергии нуждаются в постоянном токе, который является для них либо единственным приемлемым по технологическим условиям родом тока (электрохимия), либо родом тока, обеспечивающим ряд технико-экономических преимуществ (электротранспорт, некоторые промышленные электродвигатели). Источниками питания для большинства современных установок постоянного тока являются различные преобразователи переменного тока в постоянный (электромашинные, электронно-ионные, полупроводниковые) и в меньшей мере аккумуляторы, генераторы постоянного тока и термоэлектрические батареи.

В электрических цепях как постоянного, так и переменного тока при любых возможных режимах одновременно происходит непрерывный процесс получения электрической энергии и преобразование ее в другие виды энергии.

РАЗДЕЛ 2. ПЕРЕМЕННЫЙ ТОК

II. Пример .

Дана схема, изображенная на рисунке 2.9. Напряжение на зажимах цепи изменяется по закону:

U = 10 sin w t                                              

Даны параметры: R1, = 5 Ом, R2 = 7 Ом, L = 0,1 Г, С = 135 мк Ф, f= 40 Гц.

Рис 29 Схема для расчет» цепи

Определить: показание амперметра, закон изменения тока в цепи, построить векторную диаграмму.

11.1. Определяют реактивные сопротивления. Индуктивное сопротивление:

XL = w t.                                                      

XL = 2 p f L = 2 p × 40 × 0,1 = 25,1 Ом                       

Емкостное сопротивление:

               

11.2. Так как все элементы цепи на рисунке 2.9 соединены последовательно, то по ним протекает один и тот же ток. Определяют его по закону Ома как частное от деления напряжения на зажимах цепи на полное сопротивление цепи.

11.2.1. Амперметр показывает действующее значение тока, поэтому необходимо воспользоваться действующим значением приложенного напряжения:

                                            

11.2.2. Полное сопротивление цепи определяют исходя из следующих соображений.

Напряжения на активных сопротивлениях цепи совпадает по фазе, следовательно, активное напряжение цепи

Ur = Ur1 + Ur2,                                            

откуда, разделив правую и левую части равенства на ток, получают

r = r1 + r2.                                                        

Напряжения на катушке индуктивности и конденсаторе противоположны по фазе, следовательно, реактивное напряжение цепи

Up = UL – UC,                                                  

откуда, разделив правую и левую части равенства на ток, получают

X = XL – XC = w L – 1/ w c.                            

Известно, что активное и реактивное сопротивление цепи с последовательным соединением параметров складываются квадратично, следовательно, полное сопротивление электрической цепи находят по выражению:

11.2.3. Показание амперметра:

                                         

11.3. Прежде, чем написать закон изменения тока в цепи, можно построить векторную диаграмму, из которой можно определить, опережает или отстает ток по фазе от приложенного напряжения.

На векторной диаграмме должны быть представлены в векторной форме все токи и напряжения, реально существующие в цепи. Из рисунка 2.9 видно, что по всем элементам цепи протекает один и тот же ток. На всех сопротивлениях он вызывает падения напряжений, сумма которых равна сетевому напряжению (согласно второму закону Кирхгофа).

Как правило, векторная диаграмма отроится для действующих значений токов и напряжений. Ток рассчитан в п. 11.2.3. Определим величины падений напряжений на сопротивлениях:

Ur1 = I × r1 = 0,58 × 5 = 2,9 B                                         

Выбирают масштабы для тока и напряжения. Пусть, например, в 1 см. содержится 0,1 А, и в 1 см, - 2 В. Построение векторной диаграммы для цепи с последовательным соединением элементов удобнее начать с вектора тока. От произвольной точки плоскости в произвольном направлении откладывают вектор тока I (рисунок 2.10)

Напряжение на активном сопротивлении r1 совпадает по фазе с током, поэтому вектор U r совпадает по направлению с вектором тока I.

Напряжение на катушке UL, опережает ток по фазе на 90° . Из конца вектора Url откладывают вектор UL под углом 90°, причем, угол отсчитывают от вектора тока против часовой стрелки.

Напряжение на конденсаторе отстает от тока по фазе на угол девяносто градусов. Поэтому от конца вектора U I. откладывают вектор Uc под углом 90° по отношению к вектору тока, причем, угол отсчитывается по часовой стрелки.

Рис. 2.10. Векторные диаграммы при последовательном и параллельном соединении параметров цепи

Напряжение на сопротивлении r2 совпадает с током по фазе. Поэтому от конца вектора UL откладывают вектор U I параллельно вектору тока. Направления векторов Ur2 и I должны совпадать.

Так как по второму закону Кирхгофа можно записать:

U = Ur1 + UL + UC + Ur2                                    

то, соединяя начало вектора Ur1 с концом вектора Ur2 , получают вектор сетевого напряжения U. Из рисунка 2.10 видно, что вектор сетевого напряжения отстает по фазе от вектора тока, следовательно, полное сопротивление цепи носит активно-емкостный характер.

11.4. Известно, что в линейных электрические цепях ток изменяется по синусоидальному закону, если по этому же закону изменяется питающее напряжение.

По условию

U = Um sin w t                                             

Вектор тока опережает вектор сетевого напряжения на угол j, следовательно, закон изменения тока в цепи по рисунку 2.10 можно написать так:

                                          

Определим численное значение угла j:

              

«Минус» свидетельствует о том, что вектор напряжения является отстающим по фазе. Это равнозначно утверждению: вектор тока является опережающим по фазе. Поэтому в формулу закона изменения тока величина угла войдет со знаком «плюс».

                        

ЭЛЕМЕНТЫ ТРЕХФАЗНОЙ СИСТЕМЫ

В настоящее время получение, передача и распределение электроэнергии в большинстве случаев производится посредством трехфазной системы.

Эта система была изобретена и практически разработана во всех основных се частях выдающимся русским инженером М. О. Доливо-Добровольским.

Как показывает само название, трехфазная система состоит из трех источников электроэнергии и трех цепей, соединенных общими проводами линии передачи.

Источником энергии для всех фаз системы является трехфазный генератор (рис. 3.1). Он отличается от однофазного генератора переменного тока тем, что у него на статоре размещены три изолированные друг от друга одинаковые обмотки. Они расположены так, чтобы индуктируемые в них э.д.с. были сдвинуты по фазе одна относительно другой на 120°.

Если генератор двухполюсный, как на рис. 3.1, то оси катушек обмоток фазы сдвинуты одна по отношению к другой на одну треть окружности статора.

Рис.3.1 Схема устройства трехфазного генератора.

Рис.3.2 Кривые мгновенных значений э.д.с. трехфазной системы.

При вращении ротора его постоянное магнитное поле пересекает проводники обмоток не одновременно. Э.д.с. обмотки А достигает своего максимального значения, когда мимо нее проходит середина полюса ротора. Э.д.с. в следующей обмотке В достигает максимума позже, когда ротор повернется на 1/3 оборота. В двухполюсном генераторе повороту на 1/3 оборота соответствует 1/3 периода индуктируемой э.д.с. Следовательно, э.д.с. в обмотке В отстает по фазе от э.д.с. в обмотке А на 1/3 периода. В свою очередь, э.д.с. в обмотке С отстает по фазе от э.д.с. обмотки Д на 1/3 периода и от э.д.с. обмотки А на 2/3 периода. При такой симметрии устройства генератора максимальные значения этих э.д.с. одинаковы. Конструкция генератора должна обеспечивать их синусоидальность.

Уравнения мгновенных значений э.д.с. будут:

EA = Em sin w t                                            

                   (3.1)

                                

Кривые мгновенных значении э.д.с. показаны на рис. 3.2. На рис. 3.3 дана векторная диаграмма для их действующих значений

                                                        

Сумма этих векторов образует замкнутый треугольник: ЕА + ЕВ + ЕС = О — это трехфазная симметричная система э.д.с. Алгебраическая сумма мгновенных значений э.д.с. eА + е B + е C = 0, что легко проверить, подставив выражения этих значений как синусоидальных функций времени.

Рис. 3.3 Векторы э.д.с. трехфазной системы.

Изображения э.д.с. трехфазной системы в комплексной форме будут:

Ė A = Eф · ej0 = Eф                                    

                 (3-2)

                            

От последовательности фаз системы зависит направление вращения трехфазных двигателей, поэтому в трехфазных устройствах она проверяется специальными указателями последовательности фаз и обозначается раскраской шин на распределительных устройствах; приняты следующие цвета: фаза А — желтый, фаза В — зеленый и фаза С — красный; незаземленная нейтраль — белый, заземленная нейтраль — черный. Зажимы обмоток генератора различают: начала A, В, С, концы X, Y, Z.

Два основных способа соединения обмоток генераторов, трансформаторов и приемников в трехфазных цепях: звездой и треугольником.

СОЕДИНЕНИЕ ФАЗ ЗВЕЗДОЙ

Обмотки фаз генераторов можно было бы соединить с тремя приемниками электроэнергии шестью проводами (рис. 3.4а) и получить таким путем три независимые фазные цепи. Практически подобное соединение применяется лишь в редких случаях, но с помощью такой схемы можно нагляднее представить условия, возникающие при объединении цепей в трехфазную систему. Как и в однофазных цепях переменного тока, стрелки на схеме показывают положительные направления фазных э.д.с. и создаваемых ими токов. Положительные направления определяет разметка зажимов обмоток фаз генератора. Внутри обмоток э.д.с. и токи направлены от «концов» (X, Y, Z) к «началам» (А, В, С). Во внешней цепи токи направлены от начал обмоток фаз генераторов к приемникам.

Для соединения звездой (условное обозначение Y) зажимы X, Y, Z («концы» обмоток фаз генератора) объединяются в одну общую точку N. Соответственно в точке п объединяются и три конца фазных цепей приемника (рис. 3.4б) Между нейтральными точками генератора и приемника проложен общий нейтральный провод (или нейтраль) трехфазной системы, образуемый объединением трех обратных проводов.

 Рис.3.4 Образование соединения фаз звездой:

а — схема не объединенной трехфазной системы.

б — объединенная трехфазная система

Если предположить равными нулю поочередно все фазные эдс, кроме одной (например, проследить в объединенной системе контур тока IA при наличии в системе одной э.д.с. ЕА) то легко убедиться, что объединение системы не изменит контуры, по которым замыкаются фазные токи. Следовательно, в нейтральном проводе системы ток будет равен векторной сумме фазных токов:

İ N = İ A + İ B + İ C                                           (3.3)

Нагрузка всех трех фаз называется симметричной, если ток во всех фазах одинаков и равны сдвиги фаз между фазными напряжениями и токами, а также полные сопротивления отдельных фаз приемника (т, е. равны комплексные сопротивления фаз приемника).

Рис. 3.5. Положительные направления фазных напряжений при соединении фаз звездой.

Рис. 3.6. Векторная диаграмма линейных и фазных напряжений

для соединения фаз звездой.

При симметричной нагрузке сумма векторов фазных токов образует замкнутый треугольник. Следовательно, в этом случае ток в нейтральном проводе İ N = 0. По этой причине для заведомо симметричной трехфазной нагрузки нейтральный провод не нужен. В частности, он не используется для трехфазных двигателей.

При соединении звездой фаз генератора и приемника напряжения на их зажимах называются фазными напряжениями Uф (UA , UB, U C на рис. 3.5). Но в системе имеются также напряжения между линейными проводами, называемые линейными напряжениями (UAB,UBC, UCA) Положительные направления фазных напряжений противоположны по отношению к приемнику, включенному между линейными проводами (рис. 3.5). Следовательно, каждое из трех линейных напряжений равно векторной разности соответствующих фазных напряжений:

Ů AB = Ů A – Ů B;  

Ů BC = Ů B – Ů C;        (3.4)

ŮCA = ŮC – ŮA;          

Численные соотношения между линейными и фазными напряжениями в симметричной системе легко определить на основании векторной диаграммы (рис. 3.6). За основу диаграммы можно взять три вектора фазных напряжений ŮA, ŮB и Ů C. Углы между ними равны 120 o . Для построения вектора линейного напряжения Ů AB следует из ŮA вычесть ŮB, следовательно, нужно к Ů A прибавить (—ŮB).

Рис. 3.7. Соотношения между фазными и линейными напряжениями при соединении фаз звездой.

Рис. 3.8. Осветительная нагрузка при соединении приемников

звездой с нейтральным проводом (четырехпроводная система)

1 - квартирные предохранители;

2 - домовые предохранители;

3 - муфта; 4 - кабель.

Последний равен ŮB по величине, но противоположен ему по направлению. Так же строятся ŮB C и Ů CA. Так как рассматриваемая система напряжений симметрична, то векторы фазных и линейных напряжений образуют три равнобедренных треугольника с острыми углами по 30° и тупым углом 120°. Опустив из вершины тупого угла любого из треугольников перпендикуляр на противоположную сторону (рис. 3.7), можно найти, что

Uф cos 30 o = Uл /2 или Uл = √3 Uф;                               

В трехфазной системе, соединенной звездой, линейные напряжения больше фазных в √3 раз. При смешанной осветительной и силовой нагрузке линейное напряжение 380 В подается на зажимы трехфазных двигателей, а фазное 220 В=380/ √3 — на осветительные приборы.

При соединении звездой токи в проводах линии передачи—линейные токи IЛ равны фазным, так как все части фазной цепи и линейные провода соединены последовательно: IЛ = IФ.

При осветительной нагрузке в случае соединения звездой приемники включаются между линейными проводами и нейтральным проводом.

Часто осветительная нагрузка бывает несимметричной, в этом случае необходим нейтральный провод (рис. 3.8). При отсутствии нейтрального провода в зависимости от отношения сопротивлений фаз приемника одно фазное напряжение может быть ниже необходимого, а другое слишком велико. По этой причине в нейтральном проводе магистрали запрещается устанавливать предохранители или выключатели.

РАЗДЕЛ 4.ТРАНСФОРМАТОРЫ

НАЗНАЧЕНИЕ ТРАНСФОРМАТОРОВ

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования переменных напряжений и токов неизменной частоту при передаче электроэнергии от источника к потребителю.

Трансформация напряжений и токов необходима, прежде всего, для экономичной передача и распределения электроэнергии. Энергия большой мощности S = U I при небольшом значении напряжения может быть передана только при большом значении тока. Потери энергии в линии электропередачи определяются по формуле:

D Pл = I2 Rп L                                      (4.1)

где Rn - сопротивление 1 км линии передачи, Ом/км;

L - длина линии км, а потери напряжения в этой же линии:

D Uл = I Rп L                                       (4.2)

 

Следовательно, чем меньше ток, тем меньше потери мощности и напряжения в линях электропередачи. Это достигается повышением напряжения в линии. Чем выше напряжение, тем меньше значение тока, а значит меньше сечение проводов линии передачи. Поэтому в местах производства электрической энергии - на электрических станциях напряжение повышают до 35, 11О, 220, 330, 500, 750 кВ и выше, передают энергию по проводам к потребителю, где на понижающих подстанциях трансформируют до 3, 6, 10 кВ. Эти напряжения используют при питании мощных электродвигателей, других приемников, а также трансформаторов, понижающих напряжение до 500, 380, 220 В и ниже.

УСТРОЙСТВО ТРАНСФОРМАТОРА

Трансформатор состоят из сердечника (см. рис.4.1), собранного из отдельных листов электротехнической стали и двух обмоток - первичной с числом витков w1 и вторичной с числом витков w2. Обмотки обычно выполняют из медного провода круглого или прямоугольного сечения. Начала обмоток обозначают буквами А и а, концы Х и х. Обмотки различают также по значению напряжения: обмотка высшего напряжения (ВН), обмотка низшего напряжения (Н H). К первичной обмотке подключается генератор, ко вторичной - приемник.

Рис.4.1. Электромагнитная схема трансформатора

Условное обозначение трансформатора приведено на рис.4.2

На табличке трансформатора указывается его номинальные величины: мощность SH, первичное U и вторичное U, напряжения, первичный I и вторичный I токи, напряжение короткого замыкания UK и частота f которые соответствуют номинальному тепловому режиму.

Рис.4.2. Условные обозначения трансформатора на электрических схемах

РЕЖИМ КОРОТКОГО ЗАМЫКАНИЯ

Различают короткое замыкание трансформатора в условиях эксплуатации и сопровождающиеся всплесками тока или разрушением обмоток трансформатора, и опыт короткого замыкания, проводимый для определения параметров короткого замыкания.

При опыте короткого замыкания вторичную обмотку трансформатора замыкают накоротко, а к первичной обмотке подводят пониженное напряжение, повышая его от нуля до некоторого значения UK , при котором токи короткого замыкания равны номинальным токам. В этом случае снимают показания приборов и строят характеристики короткого замыкания:

I1K = f (UK),            cos j K = f (UK),      PK = f (UK).       

Где I1 K ток короткого замыкания в первичной обмотке трансформатора;

Рк - мощность потерь короткого замыкания при номинальных токах в обмоткам.

Напряжение короткого замыкания UK обычно выражается в процентах от номинального напряжения первичной обмотки U1 H

 

                     (4.15)

и составляет 2 ¸ 8 % от U1 H.

На рис. 4.3 приведена упрощенная схема замещения трансформатора i режиме короткого замыкания. Величины сопротивлений RK

Рис. 4.3. Схема замещения трансформатора при коротком замыкания

Х K, ZK называют параметрами короткого замыкания. Их значения определяют из опыта короткого замыкания, При номинальных токах в обмотках измеряют ток I1 K, напряжение UK и мощность Р K и рассчитывают значения

              (4.16)

Полупроводники

Полупроводниками называют вещества, которые по способности проводить электрический ток занимают промежуточное положение между металлом и диэлектриками. Для изготовления полупроводниковых приборов используют вещества с кристаллической структурой. Исходным материалом наиболее часто служит германий Ge и кремний Si, а также арсенид галлия GaAs Атомы в кристаллической решетке связаны за счет обменных сил, возникающих при попарном объединении валентных электронов соседних атомов, при этом каждый из атомов остается электрически нейтральным. Такая связь называется ковалентной.

При повышении температуры возникает колебание решетки, ковалентные связи между атомами могут разрываться, что приводит к образованию пары носителей заряда – свободного электрона и незаполненной связи – дырки. Процесс образования электронно-дырочных пар называется генерацией носителей заряда (рис.6.1.) . Незаполненная электроном связь быстро заполняется одним из валентных электронов соседнего атома, на месте которого образуется дырка. Электроны и дырки совершают хаотическое движение в течение некоторого времени, после чего свободный электрон возвращается на место разорванной валентной связи, при этом исчезает пара свободных носителей заряда. Процесс этот называется рекомбинацией. В полупроводниках используются примесные полупроводники, у которых число носителей заряда существенно увеличивается. При введении в кремний атома элемента V группы Периодической системы элементов Д.И. Менделеева (например, мышьяка As) четыре его валентных электрона вступают в связь с четырьмя соседними электронами кремния и образуют устойчивую оболочку из восьми электронов.

 Рис. 6.1. Кристаллическая структура полупроводников

Девятый электрон слабо связан с ядром пятивалентного элемента, он отрывается и становится свободным. Дырки при этом не образуется.

Примесный атом становится ионом с положительным зарядом. Примесь этого типа называется донорной, а полупроводники электронными или n-типа электропроводности. В таких полупроводниках электроны свободны, а дырки связаны. Если в кремний введен атом трехвалентного элемента (например, бора В), то все три валентных электрона вступают в связь с четырьмя электронами соседних атомов кремния. Для устойчивой оболочки не хватает одного. Им является один из валентных электронов, отбираемый от соседнего атома, у которых образуется незаполненная связь – дырка. Примесь такого типа называется акцепторной, а полупроводники -дырочными или р-типа электропроводности. Дырки в них свободны, а электроны связаны. Носители зарядов, преобладающие в данном полупроводнике называются основными. В полупроводниках п-типа основные носители электроны, а не основные – дырки. В полупроводниках р-типа основные носители дырки, а не основные - электроны, (рис.6.1. а, б).

Электронно-дырочный переход

Электронно-дырочным переходом называется обедненный свободными носителями зарядов слой полупроводника, разделенный на электронную и дырочную области. Рассмотрим свойства равновесного полупроводника при отсутствии внешнего напряжения (рис. 6.2. а). Предположим, что кристалл разделен на две области: левая область р-дырочная, а правая п-область-электронная.

Дырки под действием сил теплового движения из области р переходят в область п, где они уже будут не основными носителями, а электроны из области п переходят в область р, где тоже будут не основными носителями. Из-за ухода через переход на его правой границе создается пространственный заряд отрицательный, а с левой стороны образуется положительный пространственный заряд из-за ухода электронов.

 Рис. 6.2. Условное изображение p - n, перехода (а) с прямым и обратным напряжением (в, б)

Образование пространственных зарядов в р-п переходе приводит к появлению контактной разности потенциалов. За счет контактной разности потенциалов создается электрическое поле. Оно препятствует диффузии дырок и электронов через переход и стремится вернуть дырки и электроны в свои области. Поэтому в центральной части перехода образуется слой с малой концентрацией носителей зарядов и поэтому с большим сопротивлением. Этот слой называется запирающим т.е. препятствующим прохождению тока. Внутреннее поле подхватывает не основные носители каждой области и переносит их в соседнюю, образуя дрейфовый ток. В состоянии равновесия дрейфовый и диффузионный токи равны и противоположны. Общий ток равен нулю.

Если к пластине полупроводника с р-п переходом подключить источник постоянного тока напряжением V плюсом к p - области, а минусом к n-области (рис. 6.2. б), в полупроводнике возникает электрическое поле Е nр, направленное навстречу полю пространственных зарядов Ек и результирующее поле Ер в р-п. переходе будет меньше поля Ек понизится потенциальный барьер, ток диффузии увеличится. Такое включение р-п перехода называется прямым включением, а внешнее напряжение такой полярности прямым напряжением Unp . Так как диффузионный ток стал больше дрейфового тока, то через переход, а следовательно, и через пластину начнет проходить прямой ток Inр. Если прямое напряжение плавно увеличивать, ток Iпр будет расти, сопротивление запирающего слоя уменьшается. Этот процесс называется инжекцией.

Если к р-п переходу приложить напряжение обратной полярности (рис. 6.2в), то в полупроводнике возникнет электрическое поле Еобр, совпадающее по направлению с полем Ек, и результирующее поле Ер станет больше поля Ек. Потенциальный барьер увеличится, сопротивление запирающего слоя увеличивается. Такое включение р-п перехода называется обратным включением, а внешнее напряжение обратным напряжением Uобр. Ток, обусловленный преимущественно неосновными носителями зарядов, называется обратным током Iобр. Вольт-алмерная характеристика р-п перехода (рис. 6.3а). Основные свойства р-п перехода - зависимость его сопротивления от полярности приложенного напряжения. При прямом включении оно мало, а при обратном - велико, таким образом р-п переход обладает односторонней проводимостью.

Тиристор

Тиристор - полупроводниковый прибор с тремя (или более) р-п переходами, используемый для переключения. Два крайних слоя p1 и п2 -эмиттеры: п2 - катод; p1 - анод. Два средних слоя (n1 и р2) -базы. Электрод, которому приложено напряжение управления, называется управляющим, (рис. 6.5а). Питающие напряжение подается на тиристор так, что переходы П1 и П3 будут открытыми, а П2 - закрытый. Сопротивление П1 и П3 - мало, а П2 - велико, поэтому почти все питающее напряжение оказывается приложенным к переходу П2. Ток тиристора мал. При повышении Unp (при увеличении ЭДС источника питания Е) ток тиристора мало увеличивается.

Рис. 6.5. Структура тиристора (а).

Вольт-амперная характеристика тиристора (б)

При достижении Unp = Uвкл происходит лавинное увеличение носителей заряда в переходе П2 за счет дырок и электронов, прибывших из слоев n2 и p1 в базы п1 и р2. Ток в тиристоре возрастает. Происходит пробой промежутка перехода П2. После пробоя напряжение снижается до Unp = 0,5 ¸IB. При дальнейшем увеличении ЭДС Е, ток нарастает в соответствии с вертикальным участком характеристики. Напряжение Uвкл, при котором происходит лавинообразное нарастание тока, снижают за счет введения неосновных носителей в слой р2. С увеличением управляющего тока увеличивается число добавочных носителей заряда, напряжения пробоя уменьшается (рис. 6.5 б).

Поэтому важным параметром тиристора является отпирающий ток управления - ток управляющего электрода, обеспечивающий переключение тиристора в открытое состояние.

При изменении полярности напряжения Е на обратную переходы П1 и П3, смещены в обратном направлении, и вольт-амперная характеристика не отличается от обратной ветви характеристики диода. Тиристоры, как управляемые переключатели, обладающие выпрямительными свойствами, нашли применение в управляемых выпрямителях.

Биполярные транзисторы

Биполярный транзистор представляет собой трехслойную структуру из чередующихся полупроводников р – и п - типа (рис. 6.6)

Рис. 6.6 Устройство, обозначение биполярных транзисторов р-п-р (а) и п-р-п (б) типов и полярности напряжения на коллекторе относительно эмиттера

Слои и присоединенные к ним выводы имеют названия: эмиттер (Э), база (Б) и коллектор (К). В транзисторе создается два р-п- перехода (рис.6.6): база-эмиттер ПБЭ и база-коллектор ПБК. В режиме усиления к эмиттерному переходу ПБЭ. прикладывается прямое напряжение UБЭ, а к коллекторному переходу ПБК - обратное напряжение U.

Рис. 6.7 Движение зарядов в транзисторе р-п-р- типа.

Рассмотрим принцип действия на примере р-п-р- транзистора (рис.6.7) Через открытий эмиттерный переход ПБЭ источником UБЭ создается прямой ток образуемый инжекцией (движением) как дырок 1 ¸5, так и электронов 6. Дырки 1 ¸5, пройдя открытый переход ПБЭ, попадают в область базы, где их дальнейшее движение осуществляется по двум направлениям. Первое направление образуют дырки типа 5, которые встречаются в базе с электронами 6 и, рекомбинируя с ними, образуют нейтральные атомы 7. Так как в рекомбинации участвуют электроны 6, поступающие на базу от источника UБЭ, то за счет рекомбинации создается ток базы IБ. Второе направление образуют непрорекомбинировавшие дырки 1 ¸4, которые достигают границы коллекторного перехода ПБ K и, подхваченные ускоряющим полем ЕБК этого перехода, проходят в коллектор и образуют эмиттерную составляющую a IЭ тока коллектора IK. Причем эта составляющая меньше тока эмиттера (a < 1) на величину тока базы 1Б. Так как рекомбинация дырок в базе, осуществимая в результате встречи их с электронами базы маловероятна из-за малой толщины базы и малой концентрации электронов в ней, то подавляющая часть дырок достигает коллектора. Значит эмиттерная составляющая тока коллектора практически равна прямому току эмиттерного перехода. Кроме тока a IЭ через коллекторный переход течет обратный ток Iк.об p, вызванный в нем источником UКБ, который включен к переходу в обратном направлении. Так как обратный ток на 3-5 порядка меньше прямого тока, то в режиме инжекции ток коллектора IK практически равен a IЭ. А при отсутствии инжекции, когда IБ = 0, ток коллектора IK уменьшается в 103 ¸ 105 раз и становится равным току Iк.об p- Причем, так как указанное изменение тока коллектора IK происходит при одном и том же напряжении на коллекторе U, то это эквивалентно изменению сопротивления коллекторного перехода в103 ¸ 105 раз.

Из приведенного описания видно, что назначение базы состоит в том что база вызывает из эмиттера на себя поток .зарядов, которые с приобретенной при этом скоростью проходят через базу, как через сито и достигают коллектора. Причем, так как ток базы IБ мал. то, очевидно, и мощность источника UБЭ, используемая для управления токами IБ, IЭ и IK, также мала. Таким образом, биполярный транзистор управляется током, подводимым к базе. Основными параметрами транзистора являются коэффициента передачи тока эмиттера a и базы b:

     (6.1)

 

Коэффициент b называют коэффициентом усиления транзистора по току. Характерные значения напряжений UБЭ и UK для биполярных транзисторов составляют UБЭ ≤ 0,3 ¸ 0,7 В и UK = 3 ¸ 500 В.

Полевые транзисторы

Полевой транзистор представляет собой двухслойную структуру (рис. 6.8), конструктивно выполненную в виде центрального полупроводника - канала - одной проводимости, окруженного полностью или частично полупроводником другой проводимости (затвора). Особенностью полевого транзистора является то, что концентрация примесей в затворе намного превышает концентрацию примесей в канале. Три вывода транзистора имеют названия: исток (И), сток (С) и затвор (З).

Принцип действия полевого транзистора основан на изменении площади поперечного сечения канала и, следовательно, сопротивления канала под действием поперечного электрического поля Е3, создаваемого приложенным к затвору напряжением (рис.6.9). Рассмотрим физические процессы, приводящие к сужению канала под действием приложенных напряжений ЕЗИ и ЕСИ. Если к транзистору приложено только напряжение ЕЗИ (рис.6.9 а), которое для р-п- перехода затвор - канал является обратным, то под действием поперечного поля ЕЗ расширяется запирающий слой.

Рис. 6.8 Устройство и обозначение полевого транзистора с затвором в виде р-п- перехода с каналом п-типа (а) и р-типа (б) и полярности напряжения на затворе и стоке относительно истока

Так как концентрация примесей в канале меньше, чем в затворе, то расширение запирающего слоя происходит практически за счет канала, причем одинаково по всей длине канала. При некотором напряжении UЗИ, называемом напряжением отсечки U OTC. канал полностью перекрывается.

Рис. 6.9 Изменение сечения канала p-типа при действии

напряжений UЗИ -.(a), UСИ (б) и одновременно UЗИ и UСИ (в); запирающий слой обозначен точками.

Таким образом, полевой транзистор - это прибор, в котором входным управляющим сигналом является напряжение затвора UЗИ, выходным сопротивление канала или ток стока I. Так как UЗИ является для р-п- перехода затвор-канал является обратным, то ток затвора ничтожно мал и на 5 ¸ 6 порядков меньше тока базы биполярного транзистора и составляет 0,01 ¸ 0,0001 мкА. Сопоставляя биполярный (БТ) и полевой (ПТ) транзисторы отметим два принципиальных отличия:

1) БТ управляется током (базы), а ПТ- напряжением (затвор);

2) при увеличении входного сигнала выходной сигнал ток у БТ

возрастает, у ПТ уменьшается.

Логические элементы

Устройств обработки информации по назначению и исполнению существует бесконечно много. Но все они могут быть созданы с использованием трех базовых логических элементов - НЕ, ИЛИ, И, Этот набор элементов называют функционально полным. Работу логических элементов удобно описывать в виде таблиц истинности, которыми задается соответствие между набором входных сигналов элемента и выходным сигналом.

Элемент НЕ (рис. 6.14) логическое отрицание или инверсия-описывается (рис.14.) таблицей истинности (а), имеет схему (б), условное обозначение (в) и передаточную характеристику (г). Таблица истинности

Рис. 6.14 Логический элемент НЕ

расшифровывается так: если на входе X = 0, то на выходе Y = 1 или, если X = 1, то Y= 0.

Видно, что элемент НЕ является электронным ключом, работа которого описана в предыдущем п.4.1.

Рис. 6.15 Логический элемент ИЛИ

Элемент ИЛИ - (рис.6.15) - логическое сложение или дизъюнкция -описывается таблицей истинности (а), имеет схему (б) и условное обозначение (в). Таблица истинности отражает следующее: выходной сигнал У = 1, если хотя бы на одном из входов сигнал единичный, т.е. X1 = 1 ИЛИ Х2 = 1.

Действительно, если X1 = 1, то независимо от значения Х2 открыт диод Д1 и У = 1, если Х2 = 1, то независимо от X1 открыт диод Д2 и У= 1.

Элемент И (рис.6.16) - логическое умножение или конъюнкция -описывается таблицей истинности (а), имеет схему (б) и условное обозначение (в). Таблица истинности отражает следующее: выходной сигнал У = 1, если одновременно все входные сигналы единичные, т.е. Х1 = 1 И Х2 = 1.

Рис. 6.16 Логический элемент И.

Действительно, если хотя бы один из входных сигналов нулевой, например, Х2 = 0, то открыт диод Д2 и, следовательно потенциал общей точки диодов Д1, Д2 и резистора R нулевой и, поэтому, У = 0 независимо от значения остальных входных сигналов. Если вое входные сигналы единичные, то все диоды Д1, Д2 закрыты и на выход через резистор R поступает напряжение Uun.

Необходимо отметить, что элементы И и ИЛИ могут иметь любое большее 2-х число входов. Рассмотренные схемные реализации элементов НЕ, ИЛИ, И простейшие и не единственно возможные. На практике применяется до 10 стандартных схемных решений логических элементов, отличающихся напряжением питания, быстродействием и т.д.

Логические элементы вместе с запоминающими устройствами составляют элементную базу устройств цифровой обработки информации.



РАЗДЕЛ 1. ПОСТОЯННЫЙ ТОК

Электротехника как наука теоретическая и прикладная вначале развивалась на основе постоянного тока, поскольку первыми источниками электрического тока были гальванические элементы. В этот период (1800 — 1850 гг.) были открыты основные закономерности электрических явлений: законы электрической цепи (Г. Ом и Г. Кирхгоф), тепловое действие электрического тока и его практическое использование (Э. Ленц, Д. Джоуль, В. В. Петров), законы электромагнитной индукции и электромагнитных сил (М. Фарадей, Д. Максвелл, Э. Ленц, А. Ампер, Б. С Якоби и др,), электрохимическое действие тока и т.д.

В дальнейшем по мере развития электроэнергетических установок и роста их мощности все больше выявлялся основной недостаток системы постоянного тока — трудность экономичной передачи электрической энергии на значительные расстояния. Возможность передачи электрической энергии па дальние расстояния, большая простота машин и другие преимущества обеспечили системе переменного тока широкое развитие. Однако и теперь, когда переменный ток занимает центральное место в электроэнергетике, многие потребители электрической энергии нуждаются в постоянном токе, который является для них либо единственным приемлемым по технологическим условиям родом тока (электрохимия), либо родом тока, обеспечивающим ряд технико-экономических преимуществ (электротранспорт, некоторые промышленные электродвигатели). Источниками питания для большинства современных установок постоянного тока являются различные преобразователи переменного тока в постоянный (электромашинные, электронно-ионные, полупроводниковые) и в меньшей мере аккумуляторы, генераторы постоянного тока и термоэлектрические батареи.

В электрических цепях как постоянного, так и переменного тока при любых возможных режимах одновременно происходит непрерывный процесс получения электрической энергии и преобразование ее в другие виды энергии.

ПРОСТЕЙШАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА

Основные понятия. Электрические цепи в общем случае представляют собой сочетание следующих элементов:

1) источников электрической энергии — генераторов;

2) электроприемников, преобразующих электрическую энергию в другие виды энергии;

3) устройств, связывающих источники электрической энергии с электроприемниками.

Простейшая электрическая цепь постоянного тока, представлена на рис. 1.1, состоит из электрического генератора Г, электрической нагрузки (электроприемника) Н и двухпроводной линии Л соединяющей источник Г с нагрузкой Н.

Линия Л и присоединенная в ее конце нагрузка Н образуют вместе внешнюю цепь генератора.

Под действием электродвижущей силы (э.д.с.) Е генератора в замкнутой цепи возникает и поддерживается направленное движение электрических зарядов — электрический ток I.

Величина тока I, протекающего по проводнику, определяется количеством электрических зарядов, проходящих через поперечное сечение проводника в единицу времени (1 сек). Если режим электрической цепи таков, что величина тока во времени не меняется, то

                                                 (1-1)

где q — количество электричества, прошедшего за t сек Единицей измерения электрического тока является ампер:

                               

Когда величина тока непостоянна и меняется во времени, зависимость (1.1) выражается в дифференциальной форме[1]:

                                                           

В металлических проводниках электрический ток представляет собой движение отрицательных зарядов (электронов). В других случаях (например, в электролитах) электрический ток осуществляется движением как положительных, так и отрицательных зарядов в противоположных направлениях. Движение положительных зарядов в одном направлении равноценно перемещению отрицательных зарядов в противоположном направлении. Для определенности условились за направление тока в проводниках считать направление движения положительных зарядов.

Действием электродвижущей силы генератора обеспечивается определенная разность потенциалов на его зажимах. Зажим с более высоким потенциалом называется положительным и обозначается знаком «плюс». Зажим с более низким потенциалом называется отрицательным и обозначается знаком «минус». Направление электрического тока внутри источника совпадает с направлением э.д.с., т.е. от зажима (—) к зажиму (+).

 

Рис 1.1 Простейшая цепь постоянного тока

Рис. 1.2. Участок цепи, не содержащий э.д.с.

 

Во внешней цепи ток направлен от зажима (+) к зажиму (—), т.е. от точки с более высоким потенциалом к точке с более низким потенциалом.

Прохождение электрического тока в цепи связано с затратой энергии. Эта энергия доставляется в цепь генератором и преобразуется здесь в тепло или в иные виды энергии (механическая работа, химическая энергия и др.).

Элемент цепи, в котором происходит необратимый процесс преобразования электрической энергии в тепловую, называется электрическим сопротивлением и на схемах обозначается в. виде прямоугольника с двумя зажимами (рис. 1.2).

Рассмотрим участок электрической цепи, не содержащий э.д.с. Прохождение электрического тока на рассматриваемом участке обусловлено наличием разности потенциалов ( j1 - j2) на его концах, или напряжением U на этом участке. Направление напряжения принимается от точки 1 с более высоким потенциалом к точке 2, где потенциал ниже, т.е. оно совпадает с направлением тока на рассматриваемом участке цепи.

Закон Ома. Основные электроэнергетические соотношения для участка цепи устанавливаются законами Ома и Джоуля—Ленца.

Согласно закону Ома, ток I на участке цепи пропорционален напряжению U на этом участке[2]:

I = Ug                                        (1.2)

Коэффициент пропорциональности g называется электрической проводимостью участка. Величина, обратная электрической проводимости.

                                                      

количественно определяет значение сопротивления участка цепи. Сопротивление измеряется в омах, а проводимость — в сименсах (сим, или 1/Ом).

Закон Ома для участка цепи часто выражают в следующем виде:

                                   (1.2 а)

В замкнутой электрической цепи (рис. 1.3) каждый элемент (генератор, провода линии, электроприемник) обладает определенным электрическим сопротивлением.

Через все последовательно соединенные элементы цепи протекает один и тот же ток I. Величина этого тока прямо пропорциональна э.д.с. генератора Е и обратно пропорциональна общему сопротивлению всей цепи:

                               (1.3)

 

где rг — сопротивление генератора;

rл — сопротивление проводов линии;

rн — сопротивление нагрузки (электроприемника);

rвнеш = rл+ rн — общее сопротивление внешней цепи.

Электродвижущая сила Е, так же как и напряжение U, измеряется в вольтах (в).

Формула (1.3) представляет собой закон Ома для замкнутой электрической цепи.

Напряжения на зажимах генератора и нагрузки. Выражение (1.3) можно привести к следующему виду:

E = Irг + Irл + Irн = Irг + Irвнеш                            (1.3а)

Часть э.д.с., которая затрачивается на преодоление внутреннего сопротивления генератора, называется падением (потерей) напряжения в генераторе:

 D Uг = Irг                                                    

Остальная часть э.д.с. затрачивается на преодоление сопротивления внешней цепи, присоединенной к зажимам генератора, и называется напряжением на зажимах генератора:

U = E – Irг = E - D Uг                        (1.4)

 При уменьшении внешнего сопротивления rвнеш ток I в цепи увеличивается, а напряжение на зажимах генератора Uг уменьшается. Зависимость Uг( I)[3] называется внешней характеристикой генератора (рис. 1.4).

Внутреннее сопротивление большинства источников, используемых в энергетических установках, как правило, во много раз меньше сопротивления внешней цепи. Чем больше мощность генератора, тем меньше при прочих равных условиях его внутреннее сопротивление.

Если rг«rвнеш, то допустимо пренебречь потерей напряжения в источнике и принять Uг ≈ E.

Рис. 1.3. Не разветвленная цепь постоянного тока

 

Рис. 1.4. Внешняя характеристика генератора

 В том случае, когда генератор соединен с нагрузкой линией передачи (рис. 1.3), при прохождении нагрузочного тока по линии в ней теряется часть напряжения DUл = Irл. В связи с этим напряжение Uнагр на зажимах нагрузки меньше, чем напряжение генератора Uг, на величину D Uл:

Uнагр = U – D Uл = E – ( rг – rл)                           

Линии передачи, как правило, выполняются медными, алюминиевыми и реже стальными проводами.

Сопротивление металлического проводника зависит от его длины l, площади поперечного сечения s и электропроводящих свойств металла, из которого выполнен проводник:

                                     (1.5)

 где l —длина проводника, м;

s — площадь поперечного сечения проводника, мм2,

r — удельное сопротивление проводника,

Величина, обратная удельному сопротивлению,

 ;                                                     

называется удельной проводимостью, выражается в

Сопротивление металлического проводника зависит от температуры: с повышением температуры сопротивление r увеличивается. Зависимость электрического сопротивления от температуры выражается формулой

r Q2 = r Q2[1 + ( Q02 - Q01)],                          (1.6)

 


Дата: 2018-11-18, просмотров: 650.