Идентификация опасных и вредных факторов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

ПК1

Основные понятия и определения …2

Объект изучения БЖД…3

Идентификация опасных и вредных факторов…3

Роль ИТР в обеспечении БЖД…4

Организация работы по охране труда…5

Организация обучения, инструктирования и проверки знаний по ОХРАНЕ ТРУДА рабочих, служащих, специалистов…7

Ответственность за нарушение законов по охране труда…8

Инструктажи по безопасности труда…8

Расследование несчастных случаев…9

ПАРАМЕТРЫ ВОЗДУШНОЙ СРЕДЫ…10

Вентиляция производственных зданий…11

Производственное освещение…13

Защита от шума, ультразвука, инфразвука…15

Защита от вибраций…18

Защита от электромагнитных полей…18

Средства защиты от электромагнитных полей пром.частоты…20

Защита от ионизирующего излучения…22

Опасные зоны оборудования и средства защиты…24

Электробезопасность…25


Основные понятия и определения

Безопасность жизнедеятельности (БЖД) - это область знаний, в которой изучаются опасности, угрожающие человеку (природе), закономерности их проявления и способы защиты от них. В определении существенны три момента: опасность, человек (природа), защита. Любая деятельность потенциально опасна. Из этого положения следует вывод, что всегда существует некоторый риск и что риск не может быть равен нулю. Опасность - явления, процессы, объекты, способные в определенных условиях наносить ущерб здоровью человека непосредственно или косвенно, т.е. вызывать нежелательные последствия. Опасность хранят все системы, имеющие энергию, а также характеристики, не соответствующие условиям жизнедеятельности человека.

Безопасность - это состояние деятельности, при которой с определенной вероятностью исключено причинение ущерба здоровью человека. Безопасность - это цель. Безопасность жизнедеятельности - средство достижения безопасности. По характеру неблагоприятного воздействия на организм человека воздействующие факторы называют вредными и опасными. К вредным относят такие факторы, которые становятся в определенных условиях причинами заболеваний или снижения работоспособности. Опасными факторами принято называть такие, которые приводят в определенных условиях к травматическим повреждениям (нарушение тканей организма и нарушение его функций) или другим внезапным и резким нарушениям здоровья.

Цель БЖД - обеспечение комфортных условий деятельности человека на всех стадиях его жизненного цикла и нормативно-допустимых уровней воздействия негативных факторов на человека и природную среду.

Задачи БЖД сводятся к теоретическому анализу и разработке методов идентификации (распознавание и количественная оценка) опасных и вредных факторов, генерируемых элементами среды обитания (технические средства, технологические процессы, материалы, здания и сооружения, элементы техносферы, природные явления). В круг научных задач также входят: комплексная оценка многофакторного влияния негативных условий обитания на работоспособность и здоровье человека; оптимизация условий деятельности и отдыха; реализация новых методов защиты; моделирование чрезвычайных ситуаций и др. Круг практических задач прежде всего обусловлен выбором принципов защиты, разработкой и рациональным использованием средств защиты человека и природной среды(биосферы) от негативного воздействия техногенных источников и стихийных явлений, а также средств, обеспечивающих комфортное состояние среды жизнедеятельности.

БЖД состоит из четырех разделов:

· общие вопросы БЖД;

· БЖД в условиях производства(охрана труда); природные аспекты БЖД (защита окружающей среды);

· БЖД в условиях чрезвычайных ситуаций.

 


Объект изучения БЖД

Объектом изучения БЖД как науки является среда или условия обитания человека. Эту среду по генезису (происхождению) можно классифицировать на производственную и непроизводственную.

С – субъекты; М – машины; ПТ – процессы труда; ПрТ - продукты труда, как целевые, так и побочные, в виде образующихся вредных и опасных примесей к воздушной среде и т.п., ПО - производственные отношения.

Природная среда в виде географо-ландшафтных (Г-Л), геофизических (Г), климатических (К) элементов; стихийных бедствий (СБ), в том числе пожаров от молний и других природных источников; природных процессов (ПП) в виде газовыделений из горных пород и т.п. может проявляться как в непроизводственной сфере, так и в производственной, особенно в таких отраслях народного хозяйства, как строительство, горная промышленность, геология, геодезия и других. Общую культуру субъектов составляют такие элементы, как нравственная культура (НК), общеобразовательная (ОК), правовая (ПК), культура общения (КО).

 

Роль ИТР в обеспечении БЖД

ИТР – инженерно-технические работники

Конкретная роль инженера в обеспечении БЖД на производстве зависит от его должностных обязанностей.

Инженер - руководитель производственного процесса обязан:

· обеспечивать оптимальные (допустимые) условия на рабочих местах подчиненных ему сотрудников;

· идентифицировать опасные и вредные факторы, сопутствующие реализации производственного процесса;

· организовывать инструктаж или обучение работающих безопасным приемам деятельности;

· обеспечивать применение и правильную эксплуатацию средств защиты работающих и окружающей среды;

· постоянно осуществлять контроль за условиями деятельности, уровнем воздействия опасных и вредных факторов на работающих и окружающую среду;

· лично соблюдать правила безопасности и контролировать их соблюдение подчиненными;

· при возникновении аварий организовывать спасение людей, локализацию огня, воздействия электрического тока, химических и других веществ.

Инженер - разработчик технологических средств и производственных процессов на этапе проектирования и подготовки производства обязан:

· идентифицировать опасные и вредные факторы, возникновение которых потенциально возможно при эксплуатации технических систем и реализации производственных процессов в штатных и аварийных режимах;

· оценивать остаточный риск возникновения опасности (вредности), социальный и материальный ущерб при ее реализации;

· применять в технических системах и производственных процессах экобиозащитную технику в целях снижения остаточного риска до допустимых значений;

· обеспечивать конструктивными решениями непрерывный (периодический) контроль за состоянием защитных средств и рабочих параметров системы или процесса, влияющего на уровень их безопасности и экономичности;

· формулировать требования к уровню подготовки оператора технических систем или производственных процессов.

 

 

ПАРАМЕТРЫ ВОЗДУШНОЙ СРЕДЫ

Метеорологические условия на рабочих местах определяются интенсивностью теплового облучения, температурой воздуха, относительной влажностью и скоростью движения воздуха, температурой поверхности.

Эти параметры воздушной среды во многом влияют на самочувствие человека. Организм человека обладает свойствами терморегуляции. Температура тела постоянна, т.к. излишнее тепло отдается окружающей среде с помощью конвекции, излучения или испарения выделяющего пота при перегревах.

Нарушение терморегуляции приводит к головокружениям, тошноте, потере сознания и тепловому удару.

При температуре воздуха до +30 °С отдача тепла с тела осуществляется за счет конвекции и излучения. При Т > 30 °С большая часть тепла отдается путем испарения. Повышенная влажность (>75 %) затрудняет терморегуляцию, т.к. уменьшает испарение.

Особо опасна высокая температура при повышенной влажности. Наступает утомление, расслабление, потеря внимания.

Движение воздуха улучшает терморегуляцию при работе, т.к. увеличивается отдача тепла конвекцией, но при низкой температуре это уже неблагоприятный фактор.

Таким образом, для теплового самочувствия человека важно определенное сочетание температуры, относительной влажности и скорости движения воздуха на рабочем месте.

Оптимальные метеоусловия:

· влажность воздуха – 40-60 %;

· скорость воздуха - 0,1-0,5 м/с зимой и в два раза выше летом;

· давление воздуха - 760 мм ртутного столба;

· оптимальное значение температуры +20 °С (зависит от сезона и тяжести работы).

Мероприятия по оздоровлению воздушной среды - механизация и автоматизация, герметизация, вентиляция, кондиционирование, тепловые экраны, воздушные и водяные завесы, отопление, индивидуальные средства защиты, организация рационального отдыха, в горячих цехах снабжение рабочих подсоленной питьевой или газированной водой.

 

Производственное освещение

Для оценки условий освещения пользуются понятием освещенности Е, лк. Освещенность измеряют люксметрами. На производстве применяют естественное и искусственное освещение.

Естественное освещение разделяется на боковое (световые проемы в стенах), верхнее (прозрачные перекрытия или световые фонари), комбинированное, когда к верхнему освещению добавляется боковое.

Естественное освещение характеризуется коэффициентом естественной освещенности е, %


где Ев - освещенность внутри помещения, лк;

 Ен - одновременная освещенность рассеянным светом снаружи, лк.

Нормированное значение е определяется по СН и П 23-05-95 с учетом характера зрительной работы, системы освещения, района расположения здания на территории РФ и ориентации здания к солнцу. Чистку стекол световых проемов необходимо проводить не реже 2-4 раз в год в зависимости от характера запыленности производственного помещения.

Искусственное освещение, осуществляемое газоразрядными и электрическими лампами, по конструктивному исполнению может быть двух систем - общее освещение и комбинированное (общее и местное). Освещенность рабочей поверхности, создаваемая светильниками общего освещения в системе комбинированного, должна составлять не менее 10 % нормируемой для комбинированного освещения. Общее освещение подразделяется на общее равномерное, общее локализованное. Применение одного местного освещения внутри зданий не допускается. По функциональному назначению искусственное освещение делится на следующие виды: рабочее, охранное, дежурное.

Аварийное освещение бывает двух видов: освещение безопасности, эвакуационное освещение.

Освещение безопасности должно быть предусмотрено во всех случаях, если действия людей в темноте могут явиться причиной взрыва, пожара, травматизма, привести к длительному расстройству технологического процесса. Светильники такого освещения должны создавать на рабочих поверхностях не менее 5 % освещенности, нормируемой для рабочего освещения при системе общего освещения.

Аварийное освещение для эвакуации людей устраивается при наличии опасности возникновения травматизма. Светильники такого освещения должны обеспечивать по линии основных проходов в помещениях освещенность не менее 0,5 лк.

Светильники освещения безопасности присоединяются к независимому источнику питания (генератор; аккумуляторные батареи; трансформаторы, питаемые от разных электрических сетей), а светильники для эвакуации людей - к сети, независимой от рабочего освещения, начиная от щита подстанции.

В соответствии со СН и П 23-05-95 для освещения помещений следует предусматривать газоразрядные лампы (люминесцентные, натриевые и т.д.). В случае невозможности применения газоразрядных источников света допускается использование ламп накаливания.

Искусственное освещение нормируется исходя из характеристики работ, при этом задаются как количественные (минимальная освещенность, допустимая яркость), так и качественные характеристики (показатель ослепленности, коэффициент пульсации освещенности, спектр излучения).

Минимальная освещенность устанавливается согласно условиям зрительной работы, которые определяются наименьшим размером объекта различения, контрастом объекта с фоном (большой, средний, малый) и характеристикой фона (темный, средний, светлый).

Расчет искусственного общего равномерного освещения производится методом светового потока (коэффициента использования).

Световой поток лампы накаливания или группы люминесцентных ламп, объединенных в один светильник, определяется по формуле

 

 

где Ен - нормированная минимальная освещенность, лк;

S - площадь освещаемого помещения, м2;

Z - коэффициент минимальной освещенности (1,1 - 1,5);

К - коэффициент запаса (1,3 - 1,8);

N - число светильников в помещении, определенное предварительно исходя из наивыгоднейшего их расположения;

пом - коэффициент использования светового потока, определяемый по таблицам в зависимости от коэффициентов отражения светового потока от потолка, стен;

св - КПД светильника.

Далее по таблицам выбирается стандартная лампа из условия: ФЛ СТ Ф.

 

Для расчета освещения наклонных поверхностей, местного и локализованного освещения применяется точечный метод, а для приближенных расчетов применяют метод удельной мощности.

Для создания средней освещенности 100 лк на каждый квадратный метр освещаемой площади при светлых потолках и стенах требуется

удельная мощность 16-20 Вт/м2 при прямом освещении лампами накаливания и 6-10 Вт/м2 при прямом освещении люминесцентными лампами. Можно пользоваться данными специальных таблиц.

Чистку светильников проводят 4-12 раз в год в зависимости от запыленности помещения. Замену ламп обычно производят индивидуально и групповым методом (через определенный срок работы). На крупных предприятиях при установленной общей мощности на освещение (свыше 250 кВт) должно быть специально выделенное лицо, ведающее эксплуатацией освещения (инженер или техник). Освещенность проверяется не реже 1 раза в год, после очередной чистки светильников и замены перегоревших ламп.

 


Защита от вибраций

Вибрация - механические колебания упругих тел при низких частотах (1-100 Гц), передаются на человека через конструкцию машин, фундамент, пол.

Различают общую и локальную вибрацию. Общая вибрация передается через конструкцию машин, фундамент и пол. Локальная вибрация передается человеку через руки, как правило, при работе с виброинструментом.

Систематическое воздействие вибраций вызывает вибрационную болезнь с потерей трудоспособности. Особенно опасны вибрации с частотой 6-9 Гц, близкие к колебаниям внутренних органов.

· Абсолютные параметры вибрации:

- частота (f, Гц);

- вибросмещение (s, м);

- амплитуда вибросмещения (s/2);

- виброскорость (v, м/с);

- виброускорение (a, м/с2).

· Относительные параметры вибрации:

-уровень виброскорости

Lv=20·lg(V/V0); V0=5·10-8 м/с – пороговая величина виброскорости

- уровень виброускорения

Lа=20·lg(а/а0); а0=3·10-4 м/с2 – пороговая величина виброускорения

Измерение вибраций производятся виброметрами.

Защита от вибраций

1. Уменьшение вибраций в источнике его возникновения.

2. Отстройка от режима резонанса путем рационального выбора массы или жесткости колеблющейся системы.

3. Виброизоляция (применение прокладок из резины, пружины и т.д.).

4. Вибропоглощающие покрытия из фетра, войлока, резины и т.д.

5. Динамическое гашение колебаний - присоединение к защищаемому объекту дополнительно колеблющейся массы, работающей в противофазе с основной возмущающей силой.

6. Организационные мероприятия.

7. Индивидуальные средства защиты (виброзащитные перчатки, обувь).

8. Медико-профилактические мероприятия.

 

Электробезопасность

Согласно ПТЭ и ПТБ все электроустановки принято разделять на 2 группы:

· установки напряжением до 1000 В;

· установки напряжением выше 1000 В.

Следует отметить, что число несчастных случаев в электроустановках напряжением до 1000 В в 3 раза больше, чем в электроустановках напряжением выше 1000 В.

Опасность поражения электрическим током отличается от прочих опасностей тем, что человек не в состоянии без специальных приборов обнаружить ее дистанционно.

Наличие напряжения обнаруживается часто слишком поздно, когда человек уже оказался под напряжением.

 

 

2.20.1. Причины электротравматизма

Наиболее распространенными причинами электротравматизма являются:

· появление напряжения там, где его в нормальных условиях быть не должно (чаще всего происходит это вследствие повреждения изоляции);

· возможность прикосновения к неизолированным токоведущим частям при отсутствии соответствующих ограждений;

· воздействие электрической дуги, возникающей между токоведущей частью и человеком в сетях напряжением выше 1000 В, если человек окажется в непосредственной близости от токоведущих частей;

· прочие причины. К ним относятся: несогласованные и ошибочные действия персонала; подача напряжения на установку, где работают люди; оставление установки под напряжением без надзора; допуск к работам на отключенном электрооборудовании без проверки отсутствия напряжения и т.д.

 

 

2.20.2. Действие электрического тока на организм человека

Электрический ток, проходя через живые ткани, оказывает термическое, электролитическое и биологическое воздействия. Это приводит к различным нарушениям в организме, вызывая как местные повреждения тканей и органов, так и общее повреждение организма.

Далее различные виды электропоражений.

Электрический удар - это поражение внутренних органов человека.

При длительном воздействии токов величиной несколько десятков миллиампер и времени действия 15 - 20 секунд может наступить паралич дыхания и смерть. Токи величиной 50 - 80 мА приводят к фибрилляции сердца, которая заключается в беспорядочном сокращении и расслаблении мышечных волокон сердца, в результате чего прекращается кровообращение и сердце останавливается.

Кратковременное действие больших токов не вызывает ни паралича дыхания, ни фибрилляции сердца.

Действие тока величиной 100 мА в течение 2 - 3 секунд приводит к смерти (смертельный ток).

Ожоги происходят вследствие теплового воздействия тока, проходящего через тело человека, или от прикосновения к сильно нагретым частям электрооборудования, а также от действия электрической дуги. Наиболее сильные ожоги происходят от действия электрической дуги в сетях 35 - 220 кВ и в сетях 6 - 10 кВ с большой емкостью сети.

Электрические знаки - это поражения кожи в местах соприкосновения с электродами круглой или эллиптической формы, серого или бело-желтого цвета с резко очерченными гранями (Д = 5-10 мм). Они вызываются механическим и химическим действиями тока. Небольшие знаки заживают благополучно, при больших размерах знаков часто происходит омертвение тела (чаще рук).

Электрометаллизация кожи - это пропитывание кожи мельчайшими частицами металла вследствие его разбрызгивания и испарения под действием тока, например при горении дуги. Поврежденный участок кожи приобретает жесткую шероховатую поверхность, а пострадавший испытывает ощущение присутствия инородного тела в месте поражения. Исход поражения зависит от площади пораженного тела, как и при ожоге. В большинстве случаев металлизированная кожа сходит и следов не остается.

Кроме рассмотренных возможны следующие травмы: поражение глаз от действия дуги; ушибы и переломы при падении от действия тока и т. д.

 

Характер воздействия.

Значение

Характер воздействия

тока, мА Переменный ток 50 Гц Постоянный ток
0,6—1,6 Начало ощущения — слабый зуд, пощипывание кожи под электродами Не ощущается
2—4 Ощущение тока распространяется и на запястье руки, слегка сводит руку Не ощущается
5—7 Болевые ощущения усиливаются во всей кисти руки, сопровождаются судорогами; слабые боли ощущаются во всей руке, вплоть до предплечья. Руки, как правило, можно оторвать от электродов Начало ощущения. Впечатление нагрева кожи под электродом
8—10 Сильные боли и судороги во всей руке, включая предплечье. Руки трудно, но в большинстве случаев еще можно оторвать от электродов Усиление ощущения нагрева
10—15 Едва переносимые боли во всей руке. Во многих случаях руки невозможно оторвать от элек­тродов. С увеличением продол­жительности протекание тока боли усиливаются Еще большее усиление ощущения нагрева как под электродами, так и в прилегающих областях кожи
20—25 Руки парализуются мгновенно, оторваться от электродов невозможно. Сильные боли, дыхание затруднено Еще большее усиление ощущения нагрева кожи, возникновение ощущения внутреннего нагрева. Незначительные сокращения мышц рук
25—50 Очень сильная боль в руках и груди. Дыхание крайне затруд­нено. При длительном токе может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания Ощущение сильного нагрева, боли и судороги в руках. При отрыве рук от электродов возникают едва переносимые боли в результате судорожного сокращения мышц
50—80 Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца Ощущение очень сильного по­верхностного и внутреннего нагрева, сильные боли во всей руке и в области груди. За­труднение дыхания. Руки не­возможно оторвать от электро­дов из-за сильных болей при нарушении контакта
100 Фибрилляция сердца через 2-3 с; еще через несколько секунд — паралич сердца Паралич дыхания при длитель­ном протекании тока
300 То же действие за меньшее время Фибрилляция сердца через 2-3 с; еще через несколько секунд — паралич дыхания
более 5000

Дыхание парализуется немедленно — через доли секунды. Фибрилляция сердца, как правило, не наступает; возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) тяжелые ожоги, разру­шения тканей

 

По ГОСТ 12.1.038-82 ССБТ «Предельно допустимые величины напряжений и токов. Электробезопасность». Факторы величины напряжения и время воздействия электрического тока, приведены в табл. 1.

Таблица 1

Время действия, сек. Длител. До 30 1 0,5 0,2 0,1
Величина тока, мА. 1 6 50 100 250 500
Величина напряжения, В. 6 36 50 100 250 500

 

При кратковременном воздействии (0,1-0,5с) ток порядка 100мА не вызывает фибрилляции сердца. Если увеличить длительность воздействия до 1с, то этот же ток может привести к смертельному исходу. С уменьшением длительности воздействия значение допустимых для человека токов существенно увеличивается. При изменении времени воздействия от 1 до 0,1с допустимый ток возрастает в 16 раз.

Кроме того, сокращение длительности воздействия электрического тока уменьшает опасность поражения человека исходя из некоторых особенностей работы сердца. Продолжительность одного периода кардиоцикла (рис. 2.1.) составляет 0075-0,85с.

В каждом кардиоцикле наблюдается период систолы, когда желудочки сердца сокращаются (пик QRS) и выталкивают кровь в артериальные сосуды.

Фаза Т соответствует окончанию сокращения желудочков и они переходят в расслабленное состояние. В период диастола желудочки наполняются кровью. Фаза Р соответствует сокращению предсердий. Установлено, что сердце наиболее чувствительно к воздействию электрического тока во время фазы Т кардиоцикла. Для того чтобы возникла фибрилляция сердца, необходимо совпадение по времени воздействия тока с фазой Т, продолжительность которой 0,15-0,2с. С сокращением длительности воздействия электрического тока вероятность такового совпадения становится меньше, а следовательно, уменьшается опасность фибрилляции сердца. В случае несовпадения времени прохождения тока через человека с фазой Т токи, значительно превышающие пороговые значения, не вызовут фибрилляции сердца.

Род и частота тока.

Постоянный и переменный токи оказывают различные воздействия на организм главным образом при напряжениях до 500 В. При таких напряжениях степень поражения постоянным током меньше, чем переменным той же величины. Считают, что напряжение 120 В постоянного тока при одинаковых условиях эквивалентно по опасности напряжению 40 В переменного тока промышленной частоты. При напряжении 500В и выше различий в воздействии постоянного и переменного токов практически не наблюдаются.

Исследования показали, что самыми неблагоприятными для человека являются токи промышленной частоты (50Гц). При увеличении частоты (более 50Гц) значения неотпускающего тока возрастает. С уменьшением частоты (от 50Гц до 0) значения неотпускающего тока тоже возрастает и при частоте, равной нулю (постоянный ток – болевой эффект), они становятся больше примерно в три раза.

Значения фибрилляционного тока при частотах 50-100Гц равны, с повышением частоты до 200Гц этот ток возрастает примерно в 2 раза, а при частоте 400Гц – почти в 3,5 раза.

Приложенное напряжение.

Сопротивление тела человека - величина нелинейная, зависящая от многих факторов: сопротивления кожи (сухая, влажная, чистая, поврежденная и т.д.); от величины тока и приложенного напряжения; от длительности протекания тока.

Наибольшим сопротивлением обладает верхний роговой слой кожи:

при снятом роговом слое RЧ = 600 - 800 Ом;

при сухой неповрежденной коже RЧ = 10 - 100 кОм;

при увлажненной коже RЧ = 1000 Ом.

Для анализа травматизма сопротивление кожи человека принимают RЧ = 1000 Ом.

Величина тока походящего через какой-либо участок тела человека, зависит от приложенного напряжения (напряжения прикосновения) и электрического сопротивления оказываемого току данным участком тела.

М ежду воздействующим током и напряжением существует нелинейная зависимость: с увеличением напряжения ток растет быстрее. Это объясняется главным образом нелинейностью электрического сопротивления тела человека. На участке между двумя электродами электрическое сопротивление тела человека в основном состоит из сопротивлений двух тонких наружных слоев кожи, касающихся электродов, и внутреннего сопротивления остальной части тела. Плохо проводящий ток наружный слой кожи, прилегающий к электроду, и внутренняя ткань, находящаяся под плохо проводящим слоем, как бы образуют обкладки конденсатора емкостью С и сопротивлением его изоляции Vн (рис.2.2.). С увеличением частоты тока сопротивление тела человека уменьшается и при больших частотах практически становится равным внутреннему сопротивлению.

При напряжении на электродах 40-45В в наружном слое кожи возникают значительные напряженности поля, которые полностью или частично нарушают полупроводящие свойства этого слоя. При увеличении напряжения сопротивление тела уменьшается и при напряжении 100-200В падает до значения внутреннего сопротивления тела. Это сопротивление для практических расчетов может быть принято равным 1000 Ом.

Путь замыкания тока.

При прикосновении человека к токоведущим частям путь тока может быть различным. Всего существует 18 вариантов путей замыкания тока через человека. Основные из них:

· голова – ноги;

· рука – рука;

· правая рука – ноги;

· левая рука – ноги;

· нога – нога.

Степень поражения в этих случаях зависит от того, какие органы человека подвергаются воздействию тока, и от величины тока, проходящего непосредственно через сердце. Так при протекании тока по пути «рука – рука» через сердце проходит 3,3% общего тока, по пути «левая рука - ноги» 3,7%, «правая рука – ноги» 6,7%, «нога – нога» - 0,4%. Величина неотпускающего тока по пути «рука – рука» приблизительно в два раза меньше, чем по пути «рука – ноги».

Голова – ноги – самый опасный путь. Поэтому предъявляются требования и к корпусу защитной каски:
- корпус каски должен выдерживать влияние химических веществ без потери своих прочностных качеств и деформации;
- корпус должен защищать от поражения током напряжением 400 В. При этом ток утечки не должен быть более 0,5 Ма.
- после удара по каске поверхность корпуса должна оставаться целостной, без повреждений.




Условия внешней среды.

Влажность и температура воздуха, наличие заземленных металлических конструкций и полов, токопроводящая пыль и другие факторы окружающей среды оказывают дополнительное влияние на условие электробезопасности. Во влажных помещениях с высокой температурой или наружных электроустановках складываются неблагоприятные условия, при которых обеспечивается наилучший контакт с токоведущими частями. Наличие заземленных металлических конструкций и полов создает повышенную опасность поражения вследствие того, что человек практически постоянно связан с одним полюсом (землей) электроустановки. Токопроводящая пыль также улучшает условия для электрического контакта человека как с токоведущими частями, так и с землей.

ПК1

Основные понятия и определения …2

Объект изучения БЖД…3

Идентификация опасных и вредных факторов…3

Роль ИТР в обеспечении БЖД…4

Организация работы по охране труда…5

Организация обучения, инструктирования и проверки знаний по ОХРАНЕ ТРУДА рабочих, служащих, специалистов…7

Ответственность за нарушение законов по охране труда…8

Инструктажи по безопасности труда…8

Расследование несчастных случаев…9

ПАРАМЕТРЫ ВОЗДУШНОЙ СРЕДЫ…10

Вентиляция производственных зданий…11

Производственное освещение…13

Защита от шума, ультразвука, инфразвука…15

Защита от вибраций…18

Защита от электромагнитных полей…18

Средства защиты от электромагнитных полей пром.частоты…20

Защита от ионизирующего излучения…22

Опасные зоны оборудования и средства защиты…24

Электробезопасность…25


Основные понятия и определения

Безопасность жизнедеятельности (БЖД) - это область знаний, в которой изучаются опасности, угрожающие человеку (природе), закономерности их проявления и способы защиты от них. В определении существенны три момента: опасность, человек (природа), защита. Любая деятельность потенциально опасна. Из этого положения следует вывод, что всегда существует некоторый риск и что риск не может быть равен нулю. Опасность - явления, процессы, объекты, способные в определенных условиях наносить ущерб здоровью человека непосредственно или косвенно, т.е. вызывать нежелательные последствия. Опасность хранят все системы, имеющие энергию, а также характеристики, не соответствующие условиям жизнедеятельности человека.

Безопасность - это состояние деятельности, при которой с определенной вероятностью исключено причинение ущерба здоровью человека. Безопасность - это цель. Безопасность жизнедеятельности - средство достижения безопасности. По характеру неблагоприятного воздействия на организм человека воздействующие факторы называют вредными и опасными. К вредным относят такие факторы, которые становятся в определенных условиях причинами заболеваний или снижения работоспособности. Опасными факторами принято называть такие, которые приводят в определенных условиях к травматическим повреждениям (нарушение тканей организма и нарушение его функций) или другим внезапным и резким нарушениям здоровья.

Цель БЖД - обеспечение комфортных условий деятельности человека на всех стадиях его жизненного цикла и нормативно-допустимых уровней воздействия негативных факторов на человека и природную среду.

Задачи БЖД сводятся к теоретическому анализу и разработке методов идентификации (распознавание и количественная оценка) опасных и вредных факторов, генерируемых элементами среды обитания (технические средства, технологические процессы, материалы, здания и сооружения, элементы техносферы, природные явления). В круг научных задач также входят: комплексная оценка многофакторного влияния негативных условий обитания на работоспособность и здоровье человека; оптимизация условий деятельности и отдыха; реализация новых методов защиты; моделирование чрезвычайных ситуаций и др. Круг практических задач прежде всего обусловлен выбором принципов защиты, разработкой и рациональным использованием средств защиты человека и природной среды(биосферы) от негативного воздействия техногенных источников и стихийных явлений, а также средств, обеспечивающих комфортное состояние среды жизнедеятельности.

БЖД состоит из четырех разделов:

· общие вопросы БЖД;

· БЖД в условиях производства(охрана труда); природные аспекты БЖД (защита окружающей среды);

· БЖД в условиях чрезвычайных ситуаций.

 


Объект изучения БЖД

Объектом изучения БЖД как науки является среда или условия обитания человека. Эту среду по генезису (происхождению) можно классифицировать на производственную и непроизводственную.

С – субъекты; М – машины; ПТ – процессы труда; ПрТ - продукты труда, как целевые, так и побочные, в виде образующихся вредных и опасных примесей к воздушной среде и т.п., ПО - производственные отношения.

Природная среда в виде географо-ландшафтных (Г-Л), геофизических (Г), климатических (К) элементов; стихийных бедствий (СБ), в том числе пожаров от молний и других природных источников; природных процессов (ПП) в виде газовыделений из горных пород и т.п. может проявляться как в непроизводственной сфере, так и в производственной, особенно в таких отраслях народного хозяйства, как строительство, горная промышленность, геология, геодезия и других. Общую культуру субъектов составляют такие элементы, как нравственная культура (НК), общеобразовательная (ОК), правовая (ПК), культура общения (КО).

 

Идентификация опасных и вредных факторов

       Вредные факторы - те, что становятся в определенных условиях причинами заболеваний или снижения работоспособности. Вредные факторы: запыленность и загазованность воздуха; шум; вибрации; электромагнитные поля; ионизирующие излучения; повышенные и пониженные атмосферные параметры (температура, влажность, подвижность воздуха, давление); недостаточное и неправильное освещение; монотонность деятельности; тяжелый физический труд; токсичные вещества; загрязненные вода и продукты питания и др.

       Опасные факторы - те, что приводят в определенных условиях к травматическим повреждениям (нарушение тканей организма и нарушение его функций) или другим внезапным и резким нарушениям здоровья. Опасные факторы: огонь, ударная волна, горячие и переохлажденные поверхности; электрический ток; транспортные средства и подвижные части машин; отравляющие вещества; острые и падающие предметы; лазерное излучение; острое ионизирующее облучение и др.

       Опасные и вредные факторы, обусловленные деятельностью человека, также называют антропогенными.

       Общей чертой практически всех рассматриваемых аварий являлась последовательность предпосылок, образующих в совокупности причинную цель.

       Наиболее типичной причинной целью происшествия оказалась последовательность событий - предпосылок следующего вида:

· ошибка человека, или отказ технологического оборудования, или недопустимое внешнее воздействие;

· случайное появление опасного фактора в произвольной части пространства;

· неисправность (отсутствие) предусмотренных средств защиты или неточных действий людей в данных условиях;

· воздействие опасных факторов на защищаемые элементы оборудования, человека или окружающую среду.

Доля предпосылок, вызванных ошибочными действиями человека составляет 50 - 80 %, тогда как технические предпосылки - 15 - 25 %.

 

Роль ИТР в обеспечении БЖД

ИТР – инженерно-технические работники

Конкретная роль инженера в обеспечении БЖД на производстве зависит от его должностных обязанностей.

Инженер - руководитель производственного процесса обязан:

· обеспечивать оптимальные (допустимые) условия на рабочих местах подчиненных ему сотрудников;

· идентифицировать опасные и вредные факторы, сопутствующие реализации производственного процесса;

· организовывать инструктаж или обучение работающих безопасным приемам деятельности;

· обеспечивать применение и правильную эксплуатацию средств защиты работающих и окружающей среды;

· постоянно осуществлять контроль за условиями деятельности, уровнем воздействия опасных и вредных факторов на работающих и окружающую среду;

· лично соблюдать правила безопасности и контролировать их соблюдение подчиненными;

· при возникновении аварий организовывать спасение людей, локализацию огня, воздействия электрического тока, химических и других веществ.

Инженер - разработчик технологических средств и производственных процессов на этапе проектирования и подготовки производства обязан:

· идентифицировать опасные и вредные факторы, возникновение которых потенциально возможно при эксплуатации технических систем и реализации производственных процессов в штатных и аварийных режимах;

· оценивать остаточный риск возникновения опасности (вредности), социальный и материальный ущерб при ее реализации;

· применять в технических системах и производственных процессах экобиозащитную технику в целях снижения остаточного риска до допустимых значений;

· обеспечивать конструктивными решениями непрерывный (периодический) контроль за состоянием защитных средств и рабочих параметров системы или процесса, влияющего на уровень их безопасности и экономичности;

· формулировать требования к уровню подготовки оператора технических систем или производственных процессов.

 

 

Дата: 2018-11-18, просмотров: 515.