Тема: Динамика науки как процесс порождения нового знания
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

План лекции:

1. Динамика научного знания.

2. Решение проблемы роста знания в концепции К. Поппера.

3. Процесс развития знания в интерпретации Т. Куна и И. Лакатоса.

4. Особенности модели роста знания в концепции П. Фейерабенда.

5. Кумулятивизм и антикумулятивизм.

6. Значение первичных теоретических моделей.

7. Процесс формирования законов.

8. Логика научного открытия.

9. Трудности процесса включения новых теоретических представлений в культуру.

10. Исторические примеры включения новых теоретических представлений в культуру в сфере отечественной философии науки.

11. Общие закономерности развития науки.

  1. Динамика научного знания.

 

Важнейшей характеристикой знания является его динамика, т. е. его рост, изменение, развитие и т. п. Эта идея, не такая уж новая, была высказана уже в античной философии, а Гегель сформулировал ее в положении о том, что «истина есть процесс», а не «готовый результат». Активно исследовалась эта проблема основоположниками и представителями диалектико-материалистической философии — особенно с методологических позиций материалистического понимания истории и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки первой половины XX в. — особенно в годы «триумфального шествия» логического позитивизма (а у него, действительно, были немалые успехи) — научное знание исследовалось без учета его роста, изменения.

Дело в том, что для логического позитивизма в целом были характерны: а) абсолютизация формально-логической и языковой проблематики; б) гипертрофия искусственно сконструированных формализованных языков (в ущерб естественным); в) концентрация исследовательских усилий на структуре «готового», ставшего знания без учета его генезиса и эволюции; г) сведение философии к частнонаучному знанию, а последнего — к формальному анализу языка науки; д) игнорирование социокультурного контекста анализа знания и т. д.

Развитие знания — сложный диалектический процесс, имеющий определённые качественно различные этапы. Так, этот процесс можно рассматривать как движение от мифа к логосу, от логоса к «преднауке», от «преднауки» к науке, от классической науки к неклассической и далее к постнеклассической и т. п., от незнания к знанию, от неглубокого неполного к более глубокому и совершенному знанию и т. д. В современной западной философии проблема роста, развития знания является центральной в философии науки, представленной особенно ярко в таких течениях, как эволюционная (генетическая) эпистемология и постпозитивизм. Эволюционная эпистемология — направление в западной философско-гносеологической мысли, основная задача которого — выявление генезиса и этапов развития познания, его форм и механизмов в эволюционном ключе и, в частности, построение на этой основе теории эволюции единой науки. Главные представители данного направления — К. Лоренц, Д. Кэмпбелл, Ж. Пиаже, Г. Фоллмер.

Эволюционная эпистемология строит свои модели развития научного знания на основе общей теории органической эволюции — и, прежде всего, сходстве механизмов развития, действующих в живой природе и познании. Исходя из того, что эволюционный подход может быть распространен на гносеологическую проблематику, представители эволюционной эпистемологии реконструируют развитие научных теорий, идей, рост научно-теоретического знания, привлекая для этих целей эволюционные модели. Особенно активно проблему роста (развития, изменения) знания разрабатывали сторонники постпозитивизма.

Постпозитивизм — течение философско-методологнческой мысли XX в., пришедшее в 60-х гг. на смену неопозитивизму (логическому позитивизму). Постпозитивизм исторически восходит к работам «позднего К. Поппера и последующих представителей философии науки (Т. Куна, И. Лакатоса, П. Фейерабенда, Ст. Тулмина и др.). Основные черты данного течения: а) отсутствие абсолютизации формальной логики и ограничение ее притязаний; б) активное обращение к истории науки как диалектическому процессу; в) переключение усилий с анализа формальной структуры «готового», «ставшего» научного знания на содержательное изучение его динамики, изменения, развития, его противоречий; г) отказ от каких бы то ни было жестких разграничений (демаркационных линий) — эмпирии и теории, науки и философии, науки и вненаучных форм знания и т. п., а попытки гибко сочетать их; д) стремление представить общий механизм развития знания как единство количественных («нормальная наука») и качественных изменений (научные революции); е) анализ социокультурных факторов возникновения и развития науки; ж) резкое изменение отношения к философии, подчеркивание ее роли как одного из важных факторов научного исследования; з) замена верификации фальсификацией — методологической процедурой, посредством которой устанавливается ложность гипотезы или теории в результате ее эмпирической проверки (в наблюдении, измерении или эксперименте).

Обратившись лицом к истории, развитию науки (а не только к ее формальной структуре), представители постпозитивизма стали строить различные модели этого развития, рассматривая их как частные случаи общих эволюционных процессов, совершающихся в мире. Таким образом, в постпозитивизме происходит существенное изменение проблематики философских исследований: если логический позитивизм основное внимание обращал на формальный анализ структуры готового научного знания, то постпозитивизм главной своей проблемой делает понимание роста, развития знания. В связи с этим представители постпозитивизма вынуждены были обратиться к изучению истории возникновения, развития и смены научных идей и теорий. Первой такой концепцией стала концепция роста знания К. Поппера.

  1. Решение проблемы роста знания в концепции К. Поппера.

Карл Поппер (1902—1994) рассматривает знание (в любой его форме) не только как готовую, ставшую систему, но также и как систему изменяющуюся, развивающуюся. Этот аспект анализа науки он и представил в форме концепции роста научного знания. Отвергая агенетизм, антиисторизм логических позитивистов в этом вопросе, он считает, что метод построения искусственных модельных языков не в силах решить проблемы, связанные с ростом нашего знания. Но в своих пределах этот метод правомерен и необходим. Поппер отчетливо осознает, что выдвижение на первый план изменения научного знания, его роста и прогресса может в некоторой степени противоречить распространенному идеалу науки как систематизированной дедуктивной системы. Этот идеал доминирует в европейской эпистемологии, начиная с Евклида.

Однако, при всей несомненной важности и притягательности указанного идеала, к нему недопустимо сводить науку в ее целостности, элиминировать такую существенную ее черту, как эволюция, изменение, развитие. Но не всякая эволюция означает рост знания, а последний не может быть отождествлен с какой-либо одной (например, количественной) характеристикой эволюции.

Для Поппера рост знания не является повторяющимся или кумулятивным процессом, он есть процесс устранения ошибок, «дарвиновский отбор». Говоря о росте знания, он имеет в виду не простое накопление наблюдений, а повторяющееся ниспровержение научных теорий и их замену лучшими и более удовлетворительными теориями. Согласно Попперу, «рост знаний идет от старых проблем к новым проблемам, посредством предположений и опровержений». При этом «основным механизмом роста знаний остается именно механизм предположений и опровержений»[1].

Таким образом, рост научного знания состоит в выдвижении смелых гипотез и наилучших (из возможных) теорий и осуществлении их опровержений, в результате чего и решаются научные проблемы. Для обоснования своих логико-методологических концепций Поппер использовал идеи неодарвинизма и принцип эмерджентного развития: рост научного знания рассматривается им как частный случай общих мировых эволюционных процессов.

Рост научного знания осуществляется, по его мнению, методом проб и устранения ошибок и есть не что иное, как способ выбора теории в определенной проблемной ситуации — вот что делает науку рациональной и обеспечивает ее прогресс. Поппер указывает на некоторые сложности, трудности и даже реальные опасности для этого процесса. Среди них такие факторы, как, например, отсутствие воображения, неоправданная вера в формализацию и точность, авторитаризм. К необходимым средствам роста науки философ относит такие моменты, как язык, формулирование проблем, появление новых проблемных ситуаций, конкурирующие теории, взаимная критика в процессе дискуссии («Метод науки — это критический метод»).

В своей концепции Поппер формулирует три основных требования к росту знания. Во-первых, новая теория должна исходить из простой, новой, плодотворной и объединяющей идеи. Во-вторых, она должна быть независимо проверяемой, т. е. вести к представлению явлений, которые до сих пор не наблюдались. Иначе говоря, новая теория должна быть более плодотворной в качестве инструмента исследования. В-третьих, хорошая теория должна выдерживать некоторые новые и строгие проверки. Теорией научного знания и его роста является эпистемология, которая в процессе своего формирования становится теорией решения проблем, конструирования, критического обсуждения, оценки и критической проверки конкурирующих гипотез и теорий. Свою модель роста научного познания Поппер изображает схемой: Р1 — ТТ — ЕЕ — Р2, где Р1 — некоторая исходная проблема, ТТ — предположительная пробная теория, т. е. теория, с помощью которой она решается, ЕЕ — процесс устранения ошибок в теории путем критики и экспериментальных проверок, Р2 — новая, более глубокая проблема, для решения которой необходимо построить новую, более глубокую и более информативную теорию.

  1. Процесс развития знания в интерпретации Т. Куна и И. Лакатоса.

 

Общая схема (модель) историко-научного процесса, предложенная Томасом Куном (1922—1995), включает в себя два основных этапа. Это «нормальная наука», где безраздельно господствует парадигма, и «научная революция» — распад парадигмы, конкуренция между альтернативными парадигмами и, наконец, победа одной из них, т. е. переход к новому периоду «нормальной науки». Кун полагает, что переход одной парадигмы к другой через революцию является обычной моделью развития, характерной для зрелой науки. Причем, научное развитие, по его мнению, подобно развитию биологического мира, представляет собой однонаправленный и необратимый процесс. Что же происходит в ходе этого процесса с правилами-предписаниями?

Допарадигмальный период характеризуется соперничеством различных школ и отсутствием общепринятых концепций и методов исследования. Для этого периода в особенности характерны частые и серьезные споры о правомерности методов, проблем и стандартных решений. На определенном этапе эти расхождения исчезают в результате победы одной из школ.

Конкретизируя и уточняя понятие «парадигма», Кун вводит понятие «дисциплинарная матрица». Важнейшим элементом ее структуры (наряду с символическими обобщениями, «метафизическими» (философскими) частями и ценностными установками) Кун считает «общепринятые образцы», «признанные примеры» конкретного решения определенных щублем («головоломок»). Этот процесс и обеспечивает функционирование «нормальной науки».

Кризис парадигмы есть вместе с тем и кризис присущих ей «методологических предписаний». Банкротство существующих правил-предписаний означает прелюдию к поиску новых, стимулирует этот поиск. Результатом этого процесса является научная революция — полное или частичное вытеснение старой парадигмы новой, несовместимой со старой.

В ходе научной революции происходит такой процесс, как смена «понятийной сетки», через которую ученые рассматривали мир. Изменение (притом кардинальное) данной «сетки» вызывает необходимость изменения методологических правил-предписаний. Ученые — особенно мало связанные с предшествующей практикой и традициями— могут видеть, что правила больше не пригодны, и начинают подбирать другую систему правил, которая может заменить предшествующую и которая была бы основана на новой «понятийной сетке». В этих целях ученые, как правило, обращаются за помощью к философии и обсуждению фундаментальных положений, что не было характерным для периода «нормальной науки».

Кун отмечает, что в период научной революции главная задача ученых-профессионалов как раз и состоит в упразднении всех наборов правил, кроме одного — того, который «вытекает» из новой парадигмы и детерминирован ею. Однако упразднение методологических правил должно быть не их «голым отрицанием», а «снятием», с сохранением положительного.

«Научно-исследовательская программа» — основное понятие концепции науки Имре Лакатоса (1922—1974). Она, по его мнению, является основной единицей развития и оценки научного знания. Под научно-исследовательской программой философ понимает серию сменяющих друг друга теорий, объединяемых совокупностью фундаментальных идей и методологических принципов. Любая научная теория должна оцениваться вместе со своими вспомогательными гипотезами, начальными условиями и, главное, в ряду с предшествующими ей теориями. Строго говоря, объектом методологического анализа оказывается не отдельная гипотеза или теория, а серия теорий, т. е. некоторый тип развития.

Согласно Лакатосу, каждая научно-исследовательская программа, как совокупность определенных теорий, включает в себя: а) «жесткое ядро» — целостная система фундаментальных, частнонаучных и онтологических допущений, сохраняющаяся во всех теориях данной программы; б) «защитный пояс», состоящий из вспомогательных гипотез и обеспечивающий сохранность «жесткого ядра» от опровержений; он может быть модифицирован, частично или полностью заменен при столкновении с контрпримерами; в) нормативные, методологические правила-регулятивы, предписывающие, какие пути наиболее перспективны для дальнейшего исследования («положительная эвристика»), а каких путей следует избегать («негативная эвристика»). Рост зрелой науки — это смена непрерывно связанных совокупностей теорий, за которыми стоит конкретная научно-исследовательская программа — «фундаментальная единица оценки» существующих программ. А это важнейшая задача методологии, которая должна давать эти оценки на основе «диалектически развитого историографического метода критики».

Иначе говоря, сравниваются и оцениваются не просто две теории, а теории и их серии, в последовательности, определяемой реализацией исследовательской программы. Основными этапами в развитии последней, согласно Лакатосу, являются прогресс и регресс, граница этих стадий — «пункт насыщения». Новая программа должна объяснить то, что не могла старая. Смена основных научно-исследовательских программ и есть научная революция.

Особое внимание следует обратить на мысль Лакатоса, когда он указывает на то, что некоторые величайшие научно-исследовательские программы «прогрессировали на противоречивой основе». В этой связи он ссылается на Н. Бора, который, как известно, в своем принципе дополнительности сумел выразить некоторые реальные диалектические противоречия микрообъектов. Можно без преувеличения сказать, что идея о выявлении и «снятии» (т. е. разрешении, а не устранении) возникающих в теории противоречий свидетельствует о сильной «диалектической струе» в концепции Лакатоса о природе научного метода и об источниках и механизмах развитии научного знания.

  1. Особенности модели роста знания в концепции П. Фейерабенда.

Пол Фейерабенд (1924—1974) исходил из того, что существует множество равноправных типов знания, и данное обстоятельство способствует росту знания и развитию личности. Философ солидарен с теми методологами, которые считают необходимым создание такой теории науки, которая будет принимать во внимание историю. Это тот путь, по которому нужно следовать, если мы хотим преодолеть схоластичность современной философии науки.

Фейерабенд делает вывод о том, что нельзя упрощать науку и ее историю, делать их бедными и однообразными. Напротив, и история науки, и научные идеи, и мышление их создателей должны быть рассмотрены как нечто диалектическое — сложное, хаотичное, полное ошибок и разнообразия, а не как нечто неизменное или однолинейный процесс. В этой связи Фейерабенд озабочен тем, чтобы и сама наука, и ее история, и ее философия развивались в тесном единстве и взаимодействии, ибо возрастающее их разделение приносит ущерб каждой из этих областей и их единству в целом, а потому этому негативному процессу надо положить конец.

Американский философ считает недостаточным абстрактно-рациональный, т. е. неопозитивистский, подход к анализу роста, развития знания. Ограниченность этого подхода он видит в том, что он, по сути, отрывает науку от того культурно-исторического контекста, в котором она пребывает и развивается. Чисто рациональная теория развития идей, по словам Фейерабенда, сосредоточивает внимание главным образом на тщательном изучении «понятийных структур», включая логические законы и методологические требования, лежащие в их основе, но не занимается исследованием неидеальных сил, общественных движений, т. е. социокультурных детерминант развития науки. Односторонним считает философ социально-экономический анализ последних, так как этот анализ впадает в другую крайность — выявляя силы, воздействующие на наши традиции, забывает, оставляет в стороне понятийную структуру последних.

Фейерабенд ратует за построение новой теории развития идей, которая была бы способна сделать понятными все детали этого развития. А для этого она должна быть свободной от указанных крайностей и исходить из того, что в развитии науки в одни периоды ведущую роль играет концептуальный фактор, в другие — социальный. Вот почему всегда необходимо держать в поле зрения оба этих фактора и их взаимодействие. Изменение, развитие научного знания есть одновременно и изменение научных методов, «методологических директив», которые Фейерабенд не отвергает, но и не ограничивает их только рациональными правилами. Его методологическое кредо «все дозволено!» означало, что исследователи могут и должны использовать в своей научной работе любые методы и подходы, которые представляются им заслуживающими внимания. При этом Фейерабенд резко выступал против неопозитивистского схоластического конформизма с его требованием «оставлять все так, как есть». Философ подчеркивает, что (как и вся наука в целом) «методологические директивы» не являются статичными, неизменными, а всегда носят конкретно-исторический характер.

Наука, как сложный, динамический процесс, насыщенный «неожиданными и непредсказуемыми изменениями», «требует разнообразных действий и отвергает анализ, опирающийся на правила, которые установлены заранее без учета постоянно меняющихся условий истории». Данные истории, по Фейерабенду, играют решающую роль в спорах между конкурирующими методологическими концепциями. Кроме того, эти данные служат той основой, исходя из которой можно наиболее достоверно объяснить эволюцию теории, которую (эволюцию) нельзя не учитывать в методологических оценках.

  1. Кумулятивизм и антикумулятивизм.

В истории науки существует два крайних подхода к анализу динамики, развития научного знания и механизмов этого развития.

Кумулятивизм (от лат. cumuli — увеличение, скопление) считает, что развитие знания происходит путем постепенного добавления новых положений к накопленной сумме знаний. Такое понимание абсолютизирует количественный момент роста, изменения знания, непрерывность этого процесса и исключает возможность качественных изменений, момент прерывности в развитии науки, научные революции. Сторонники кумулятивизма представляют развитие научного знания как простое постепенное умножение числа накопленных фактов и увеличение степени общности устанавливаемых на этой основе законов. Так, Г. Спенсер мыслил механизм развития знания по аналогии с биологическим механизмом наследования благоприобретенных признаков: истины, накопленные опытом ученых предшествующих поколений, становятся достоянием учебников, превращаются в априорные положения, подлежащие заучиванию.

Антикумулятивизм полагает, что будто в ходе развития познания не существует каких-либо устойчивых (непрерывных) и сохраняющихся компонентов. Переход от одного этапа эволюции науки к другому связан лишь с пересмотром фундаментальных идей и методов. История науки изображается представителями антикумулятивизма в виде непрекращающейся борьбы и смены теорий и методов, между которыми нет ни логической, ни даже содержательной преемственности. Объективно процесс развития науки далек от этих крайностей и представляет собой диалектическое взаимодействие количественных и качественных (скачки) изменений научного знания, единство прерывности и непрерывности в его развитии.

  1. Значение первичных теоретических моделей.

 

Модели играют большую роль в научно-теоретическом познании. Они позволяют представить в наглядной форме объекты и процессы, недоступные для непосредственного восприятия: например, модель атома, модель Вселенной, модель генома человека и пр. Теоретические модели отражают строение, свойства и поведение реальных объектов. Построение научной модели является результатом взаимодействия субъекта научно-познавательной деятельности с реальностью. Существует точка зрения, согласно которой первичные модели можно оценивать как метафоры, основанные на наблюдениях и выводах, сделанных на основании наблюдений, способствующих наглядному представлению и сохранению информации. Известный западный философ науки И. Лакатос отмечал, что процесс формирования первичных теоретических моделей может опираться на программы троякого рода: во-первых, — это система Евклида (Евклидова программа), во-вторых, — эмпиристская программа и, в-третьих, — индуктивистская программа. Все три программы исходят из организации знания как дедуктивной системы.

Евклидианскую программу, которая предполагает, что все можно дедуцировать из конечного множества тривиальных истинных высказываний, состоящих только из терминов с тривиальной смысловой нагрузкой, принято называть программой тривиализации знания. Данная программа содержит сугубо истинные суждения, но она не работает ни с предположениями, ни с опровержениями. Знание как истина вводится на верхушку теории и без какой-либо деформации «стекает» от терминов-примитивов к определяемым терминам.

В отличие от Евклидовой, эмпиристская программа строится на основе базовых положений, имеющих общеизвестный эмпирический характер. Эмпиристы не могут допустить иного введения смысла, чем снизу теории. Если эти положения оказываются ложными, то данная оценка проникает вверх по каналам дедукции и наполняет всю систему. Следовательно, эмпиристская теория предположительна и фальсифицируема. И если евклидианская теория располагает истину наверху и освещает ее естественным светом разума, то эмпиристская — располагает ее внизу и освещает светом опыта. Но обе программы опираются на интуицию.

Об индуктивистской программе Лакатос говорит так: «Изгнанный с верхнего уровня разум стремится найти прибежище внизу. Индуктивистская программа возникла в рамках усилий соорудить канал, посредством которого истина течет вверх от базисных положений, и, таким образом, установить дополнительный логический принцип, принцип ретрансляции истины». Возникновение индуктивистской программы было связано с темными докоперниканскими временами Просвещения, когда опровержение считалось неприличным, а догадки презирались. «Передача власти от Откровения к фактам, разумеется, встречала оппозицию церкви. Схоластические логики и «гуманисты» не уставали предрекать печальный исход индуктивистского предприятия» (Лакатос). Индуктивная логика была заменена вероятностной логикой. Окончательный удар по индуктивизму был нанесен Поппером, который показал, что снизу вверх не может идти даже частичная передача истины и значения.

По мнению академика В. С. Степина, «главная особенность теоретических схем состоит в том, что они не являются результатом чисто дедуктивного обобщения опыта». В развитой науке теоретические схемы вначале строятся как гипотетические модели с использованием ранее сформулированных абстрактных объектов. На ранних стадиях научного исследования конструкты теоретических моделей создаются путем непосредственной схематизации опыта.

Важными характеристиками теоретической модели являются ее структурность, а также возможность переноса абстрактных объектов из других областей знания. По Лакатосу, к основным структурным единицам следует причислять жесткое ядро, пояс защитных гипотез, положительную и отрицательную эвристику. Отрицательная эвристика запрещает применять опровержения к жесткому ядру программы. Положительная эвристика разрешает дальнейшее развитие и расширение теоретической модели. В процессе формирования первичных теоретических моделей весьма значимо положение, выдвинутое К. Поппером: «Выдвигай гипотезы, имеющие большее эмпирическое содержание, чем у предшествующих». Формирование первичных теоретических моделей также связано с этапом выдвижения гипотезы и последующим ее обоснованием.

В качестве теоретических конструктов, этаких «кирпичиков» научной модели, выступают абстрактные объекты. Они направлены на замещение тех или иных связей действительности, но они не могут существовать в статусе реальных объектов, так как представляют собой идеализации. На выбор абстрактных объектов оказывает существенное влияние научная картина мира, которая стимулирует развитие исследовательской практики, определение задач и способов их решений. Абстрактные объекты, которые иногда называют теоретическими объектами или конструктами, являются идеализациями действительности. В них могут содержаться признаки, которые соответствуют реальным объектам, а могут присутствовать свойства, которыми не обладает ни один реальный объект.

Теоретические объекты передают смысл таких понятий, как «идеальный газ», «абсолютное черное тело», «точка», «сила», «окружность», «отрезок» и пр. В реальности не существует изолированных систем, которые бы не испытывали никаких воздействий, поэтому вся классическая механика, ориентированная на закрытые системы, построена с помощью теоретических конструктов. Конструктивное видоизменение наблюдаемых условий, полагание новых идеализаций, созидание иной научной предметности, не встречающейся в готовом виде, интегративное перекрещивание принципов на «стыке наук», ранее казавшихся не связанными друг с другом, — таковы особенности логики формирования первичных теоретических моделей, дающих новое знание.

  1. Процесс формирования законов.

 

Понятие «закон» указывает на наличие внутренне необходимых, устойчивых и повторяющихся связей между событиями и состояниями объектов. Закон отражает объективно существующие взаимодействия в природе и в этом смысле понимается как природная закономерность. Законы науки, направленные на отражение природной закономерности, формулируются с использованием искусственных языков своей дисциплинарной области. Законы, выработанные человеческим сообществом как нормы человеческого сосуществования, значительно отличаются от законов естественных наук и имеют, как правило, конвенциальный характер. Выделяют «вероятностные» (статистические) законы, основанные на вероятностных гипотезах относительно взаимодействия большого числа элементов, и «динамические» законы, т.е. законы в форме универсальных условий.

Законы науки отражают наиболее общие и глубинные природные и социальные взаимодействия, они стремятся к адекватному отображению закономерностей природы» Однако, сама мера адекватности и то, что законы науки есть обобщения, которые изменчивы и подвержены опровержению, вызывает к жизни весьма острую философско-методологическую проблему о природе законов. Не случайно Кеплер и Коперник понимали законы науки как гипотезы. Кант вообще был уверен, что законы не извлекаются из природы, а предписываются ей. Французский математик Анри Пуанкаре доказывал, что законы геометрии вовсе не являются утверждениями о реальном мире, а представляют собой произвольные соглашения о том, как употреблять такие термины, как «прямая линия» и «точка». Мах пришел к выводу, что законы отвечают нашей психической потребности упорядочить физические ощущения. Причем, исследовать законы связи между представлениями должна психология; открывать законы связи между ощущениями — физика; разъяснять законы связи между ощущениями — психофизика.

Формирование законов предполагает, что обоснованная экспериментально или эмпирически гипотетическая модель имеет возможность для превращения в схему. Причем, теоретические схемы вводятся вначале как гипотетические конструкции, но затем они адаптируются к определенной совокупности экспериментов и в этом процессе обосновываются как обобщение опыта. Затем должен следовать этап ее применения к качественному многообразию вещей, т. е. ее качественное расширение. И лишь после этого — этап количественного математического оформления в виде уравнения или формулы, что и знаменует собой фазу появления закона. Итак, модель схемакачественные и количественные расширения метаматизация формулировка закона, вот апробированная наукой цепочка.

На всех без исключения стадиях научного исследования реально осуществляются как корректировка самих абстрактных объектов, так и их теоретических схем, а также их количественных математических формализаций. Теоретические схемы также могли видоизменяться под воздействием математических средств, однако, все эти трансформации оставалась в пределах выдвинутой гипотетической модели. В.С. Степин подчеркивает, что «в классической физике можно говорить о двух стадиях построения частных теоретических схем как гипотез: стадии их конструирования в качестве содержательно-физических моделей некоторой области взаимодействий и стадии возможной перестройки теоретических моделей в процессе их соединения с математическим аппаратом». На высших стадиях развития эти два аспекта гипотезы сливаются, а на ранних они разделены.

Научные исследования в различных областях стремятся не просто обобщить определенные события в мире нашего опыта, но и выявить регулярности в течении этих событий, установить общие законы, которые могут быть использованы для предсказания и объяснения.

  1. Логика научного открытия.

 

По отношению к логике научного открытия традиционной считается установка, что разработка безотказно работающих правил творчества — задача неосуществимая. Невозможно дать рациональные обоснования спонтанному творческому процессу. В логике открытия большое место отводится смелым догадкам, интуиции, инсайту, переключению гештальтов («образцов»), аналоговому моделированию. Широко распространены указания на эвристику, которая сопровождает процесс научного открытия. Эвристика часто воспринимается как сюрпризная сфера поиска и находок, связанной с поиском в условиях неопределенности. Эвристические методы и модели предлагают использование нетривиальных сценариев, средств и методов. Им противостоят формально-логические приемы.

Логика открытий принципиально не поддается формализации. Редукция, заимствование методов, интеграция приемов гуманитарных и технических наук, выбор практического внедрения тех или иных научных разработок, сам решающий эксперимент дано или неявно основываются на эвристических допущениях. И хоть эвристика, как раздел методологии, еще не получила официального признания, она оценивается как стратегия поиска эффективных и оригинальных решений, как мера творческого риска. В постнеклассической картине мира качество эвристичности теории выдвинуто на роль критерия научного знания.

Характерный признак логики открытия — ее принципиальная междисциплинарность. Творческая деятельность опирается на методы, отличные от методов простого перебора и от традиционно принятых и устоявшихся. Модели осуществления поиска значительно индивидуализированы и тесно связаны с психической и мотивационной деятельностью субъекта познания и оказывают достаточное сопротивление внешним ограничениям, накладываемым на параметры исследования.

Ученые фиксируют ряд этапов, сопровождающих процесс научного открытия:

• выделение в потоке входящей информации дискретных объектов (селективный отбор);

• выявление связей между ними и связь с поставленной задачей;

• абстрагирование от периферийных связей и объектов;

• формирование обобщенных объектов и поиск по полученному лабиринту.

В западной философии науки выделяются три группы теорий, отражающих эвристические стратегии: это теория «тихой воды», или усредненного труда, блицкрига, или инсайта; лучшей мышеловки, или оптимального методологического регулятива. Из современных попыток приблизиться к секретам эвристики можно отметить «мозговую атаку» А.Ф. Осборна. В ней наряду с традиционными приемами изобретательства, связанными с замещением, переносом, объединением и разделением, отмечаются приемы, стимулирующие воображение: система сжатых сроков, обсуждение проблемы в свободной обстановке без критики, создание атмосферы состязательности, а также выдвижение шуточных предположений. Метод «мозгового штурма» предполагает выдвижение сколь угодно большого количества гипотез по доводу решения поставленной проблемы, которые следуют друг за другом и не нуждаются в доказательстве. Примечательно, что на этом этапе запрещена любого рода критика, от откровенных опровержений до скрытых в улыбке, жестах и мимике знаков неприятия. Ценность выдвинутых гипотез рассматривается на уровне экспертов.

Самыми элементарными моделями эвристической деятельности считаются: модель слепого поиска, в которой исключительное значение играет интуиция и фактор удачи, и модель «лабиринта», в которой поиск решения уподобляется блужданию по лабиринту, настойчивого продвижения вперед, находчивость и отражает возможность как успехов, так и неудач.

В отличие от скупого и сжатого набора постулатов в геометрии или физике, эвристические постулаты стремятся отразить все возможные эвристические отношения. Например, один из эвристических постулатов отмечает, что нет таких исследовательских задач, которые бы не противились действительности и, в принципе, не могли быть решены. А сам поиск решения исследовательской задачи следует начинать с наиболее простых вариантов. Интуитивный поиск эффективен после проведенной сознательной и интенсивной работы мозга. Степень оригинальности решения изобретательской задачи зависит от расстояния между старым решением и новым. Бесспорным является утверждение, что творческий, эвристический процесс начинается с формулировки изобретательской задачи, которая есть не что иное, как звено между известным и неизвестным, существующим и искомым, между знанием и незнанием.

К эвристическим постулатам причисляют следующие:

• Класс изобретательских задач бесконечен, класс методов изобретения конечен.

• Метод поиска решения всегда содержит субъективную сторону, его эффективность зависит от мастерства изобретателя.

• Всегда существует противоположный метод решения задачи как альтернатива уже найденному.

• Ни одна изобретательская задача не решалась без определенного осознанного или неосознанного метода, стратегии или тактики поведения и рассуждения.

Эвристика обогащает исследователя многообразием нестандартных методов, среди них метод аналогии, основывающийся на подражании всевозможным структурам; метод прецедента, указывающий на уже имеющиеся в научной практике случаи; метод реинтеграции, или «нить Ариадны», который строится на создании сложных структур из более простых; метод организмической имитации (к примеру, у Тойнби при построении теории локальных цивилизаций); метод псевдоморфизации, т. е. использование не своей формы (оружие в виде зонтика, трости и пр.).

Весьма интересен метод инверсии (т.е. обращения) вредных сил в полезные, он использовался и Лакатосом в ситуации, когда через определенный промежуток времени «аномалии» становились полем защиты доказуемой теории. Метод антитезы, известный еще из гегелевской диалектики, нацеливает на использование теорий, приемов и методов, диаметрально противоположных традиционным. Плодотворным может оказаться и метод стилевых трафаретов, метод гирлянд и сцеплений, метод многоэтажных конструкций и метод секционирования. Особого внимания всегда заслуживал метод антропотехники, предполагающий создание новых конструкций путем приспособления к возможностям человека.

Методы синектики стоят обособленно, потому что она рассматривается как система психологической активизации мышления. Она предполагает также создание определенных групп, которые в процессе своей деятельности накапливают опыт и разнообразные приемы, предлагая экспертные оценки.

И если трудно говорить о собственно логике научного открытия, состоящей в законах и формулах, то достаточно убедительно можно говорить о моделях, полученных при анализе процесса научного открытия. К ним относятся:

• Модель «трансформатор» подчеркивает необходимость не относиться к существующей проблеме как к окончательно сформулированной, но пытаться определить ее решение только путем многократной трансформации и многократного переформулирования условий и требований, видоизменения целей.

• Модель «шлюз» отталкивается от необходимости «открыть шлюзы» изначальной творческой активности человека, прибегая к средствам морального или материального поощрения.

• Модель «сосуд» утверждает, что каждый человек есть хранилище информации и распорядитель множества возможностей. Накапливаемое им знание имеет динамический характер и может переливаться в направлении преобразования действительности.

• Модель «семя» указывает на то, что творческая деятельность биологически обусловлена и каждый человек имеет креативные задатки и нуждается в их дальнейшем культивировании.

• Модель «ракета» акцентирует важность и значимость внутреннего импульса и энергии, которая активизируется всякий раз, когда человек заинтересован в том, чтобы решить жизненно важную для него проблему. Эта модель предполагает преобразование внутренней энергии во внешнее действие, событие или решение.

• Модель «трамплин-барьер» анализирует ситуацию, связанную с преодолением психологического барьера, так часто сопровождающего субъекта творческого процесса при недостатке информации. Иногда привычный способ мышления действует как гносеологический или информационный барьер. Преодолеть его можно, используя модель трамплина, представляющую собой совокупность эвристических правил и рекомендаций.

• Модель «призма» указывает на необходимость преломления угла зрения или поставленной задачи и рассмотрение различных граней, высветившихся в связи с изменением призмы видения проблемы.

• Модели «сухое дерево» обозначает известную от Гете особенность творчества и вдохновения, базирующуюся на том, что постоянный, ежедневный труд уподобляется процессу «колоть дрова и их сушить». Когда же вспыхнет огонь творчества, сухое дерево будет гореть ярко и искрометно.

• Модель «равноплечные, рычажные весы» подчеркивает, что для эффективного творчества необходимо, чтобы в равновесии находились такие взаимозависимые моменты, как знание, опыт творца, целеустремленная деятельность, мотивы, воля. Эти модели во многом отличаются от формализованных и стандартных приемов научного исследования. Однако логика открытий не предполагает наличие стереотипов и регламентации, расположенных в строгой последовательности и сформулированных во всеобщем виде. Она представляет сюрпризную сферу, где новизна сопровождает как сам исследовательский процесс, выбор методов и методик поиска, так и его результаты.

  1. Трудности процесса включения новых теоретических представлений в культуру.

Включение новых теоретических представлений в культуру — процесс очень важный, который связан с обеспечением преемственности в развитии научной мысли и всего интеллектуального потенциала человечества. Проблема включения новых теоретических представлений в культуру затрагивает две плоскости: во-первых, материальное воплощение и внедрение научных открытий непосредственно в сферу производственного процесса и, во-вторых, ее включение в образовательные технологии, в практику воспитания, обучения и образования.

Наука— это форма общественного сознания, направленная на адекватное отражение мира в понятиях и поиск закономерностей. Однако, быть включенной в общий потенциал культуры и доступной сознанию людей она может лишь при условии адаптации специально-научного языка и научного аппарата к интерсубъективным способам трансляции и понимания.

На процесс включения новых теоретических представлений в культуру влияет микроконтекст и макроконтекст науки. Первый означает зависимость науки от характеристик научного сообщества, работающего в условиях той или иной эпохи, социокультурной среды, от множества факторов, среди которых институциональные, собственно интеллектуальные, философские, религиозные и даже эстетические. Второй ориентирован на более глобальные зависимости — экономический рост или упадок, политические условия стабильности или дестабилизации, идеологические и духовные условия, отношения науки и власти и пр.

В принципе, процесс включения новых теоретических представлений в культуру означает объединение науки и культуры и зависит как от уровня культуры, так и от сложности тех новых теоретических представлений, которые должны быть внедрены. Анализ понятия «культура» (от лат. cultra — культивировать, возделывать) показывает, что уже в античности трансформируется его значение с акцентом на воспитанность и просвещение. Основной задачей культуры становится воспитание и возделывание самого человека.

В понятие «культура» включаются основные признаки отличия образованных и воспитанных людей от «некультурных и диких варваров». Исторически идея взаимосвязи культуры и науки прослеживается в греческом понятии «техне», которое указывает на мастерство и умение как технологию изготовления, с одной стороны, и высокий статус мастера, с другой. Ориентация на «техне» подчеркивает ремесленнический аспект жизнедеятельности, ее принципиальную технологичность, быструю внедряемость новых изобретений в жизнь.

Тенденция сближения научных ориентиров и культуры заключается также и в первоначальном этимологическом значении термина, когда культура представала как агрокультура и толковалась как целесообразное воздействие на природу, ее обрабатывание. Она прочитывается как совокупность попыток управления природными процессами на основе адекватных им свойств. Когда речь идет о целесообразном воздействии на человека, т.е. о воспитании, обучении и образовании, его основу также составляют процессы, состоящие из совокупности прививаемых норм, способов и приемов воздействия с целью получения желаемого результата. Таким образом, культивирование содержит в себе программу видоизменения объекта или субъекта, предполагает и включает в себя операции и этапы возделывания, совершенствования системы, т.е. опирается на открытые наукой теоретические представления.

Со стороны интеллектуальной составляющей культура всегда понималась как сфера прогрессивного развития способностей человеческого ума, открытого для инноваций и прогрессивного развития, эталоны которого всегда воспринимались как значимые ценности человеческого существования. Еще мудрые греки считали, что необходимо быть внимательным к любому новшеству, любому усовершенствованию, которые могли обеспечить большой успех в жизни. Основанием сближения культуры и науки является их общая направленность на созидание. Известно, что пафос подлинной культуры в созидании ценностей, и в мире человеческих отношений, и в мире искусства, и в мире хозяйствования и экономики — в этом суть культуры.

Проблема включения теоретических новаций и представлений в культуру, помимо общего просвещенческого и когнитивного аспекта, имеет еще и достаточно весомую этическую компоненту, которая оценивает все возможные преимущества и последствия, рождаемые из стремления широко следовать новациям науки, научным открытиям, широко применять и пропагандировать их, внедрять в жизнь. Гносеологические характеристики мудрости, когда полнота теоретической осведомленности переходит в практическую, обнаруживает себя на уровне утилитарных наставлений, руководства в решении повседневно-жизненных вопросов, имеют огромное значение и оказывают влияние на процесс включения теоретических новаций в культуру.

То новое, что открывает наука, не должно быть потеряно, после экспертных заключений, отслеживающих близкие и дальносрочные последствия данного научного открытия, оно должно быть включено в реальное и повседневное бытие культуры. Процесс включения новых теоретических представлений в культуру обеспечивает такую оценку культуры той или иной страны как передовая, отстающая или догоняющая. Таким образом, общая культура, всесторонняя образованность и теоретическое понимание являются весьма престижными характеристиками современника.

Сфера культуры не остается безучастной к чистой теории, а предъявляет свои требования и, в частности, предполагает культивирование в человеке таких качеств, как доброжелательность, деликатность, вежливость, толерантность. Эти качества выполняют роль механизма трансляции культурных образцов, способствующего сдерживанию и снятию деструктивного эффекта неопределенности. Толерантность сочетает в себе сложное взаимодействие эмоциональных механизмов и профессионально-творческих способностей, которые помогают адаптировать ситуацию. Не истерика и психотравмирующий взрыв, а спокойный, трезвый и всесторонний взгляд на ситуацию с оценкой различного рода последствий и возможностей ее развития, — вот, что характеризует позицию толерантности. Опора на толерантность становится особо значимой, если принять во внимание многообразие раздражающих факторов, сопровождающих процесс включения новаций в актуальный культуросозидательный потенциал. По мнению Э. Роджерса, к их числу можно причислить следующие шесть факторов: фактор новизны и нестандартности; фактор экстремальности действий; фактор целостности профессионального труда; фактор постоянной включенности в управленческие связи; фактор неопределенности.

  1. Исторические примеры включения новых теоретических представлений в культуру в сфере отечественной философии науки.

 

В размышлениях над спецификой развития отечественной научной мысли весьма популярна идея первоначальной ассимиляции научных и культурных влияний Запада. Импульс научного развития и обогащения научными достижениями отечественной культуры шел с Запада. В историческом развитии России большое влияние имели западная образованность и достижения западноевропейской культуры. На отечественные интеллектуальные ориентации весьма сильное давление оказывала «новая культурная петровская традиция». В допетровские времена в историческом развитии России научное знание хотя и признавалось, но квалифицировалось как «шаткая мудрость». Считается, что возникновение прослойки людей, обращенной к «книжной мудрости» и интеллектуальному труду, обязано своим происхождением реформам Петра Великого.

До начала XVIII в. общий уровень образования, а тем более, научной мысли в России был несопоставим с тем, что происходило в Западной Европе, невозможно было говорить о существовании в России естественнонаучных направлений, в какой-то мере аналогичных западным. В Россию приглашались иностранные ученые, русскую науку представляли немцы, швейцарцы и др. Они оказались и первыми учителями русских национальных кадров, поэтому начальный слой по-настоящему русских ученых состоял преимущественно из добросовестных учеников своих немецких учителей. Когда в 30-е гг. XVIII в. появились ученики русских учителей, стала формироваться собственно русская национальная научная школа, которая приобрела ряд особенностей, свойственных отечественной культурной традиции. Открывались университеты не только в Москве, но и в Казани, Киеве, Варшаве, Юрьеве (Тарту).

Проблема «книжной учености» состояла в том, что за исходное должны были браться не все подряд книги, потому что человек в подобном случае может получить поверхностные или второстепенные сведения, малопитательную пищу для ума либо просто остаться не информированным в отношении важнейших вопросов. Проблема заключается в качестве книжной продукции, которая положена в основание развития интеллекта. Однако только «книжная мудрость» не является окончательным и исчерпывающим критерием, «Не тот мудр, кто грамоте умеет, а тот, кто много добра творит», — гласит известное изречение. Исходя из этого, в набор требований при включении теоретических представлений в культуру входят и морально-этические императивы.

К специфике сугубо отечественной установки следует отнести стремление к построению широких обобщающих конструкций, размах и масштабность проектов. Если наши первые немецкие учителя XVIII в., отмечают исследователи, приучали своих русских учеников прежде всего к тщательности конкретных исследований и дали им для этого необходимую культуру и навыки, то уже первые самостоятельные русские исследования вышли из-под опеки традиционной немецкой школы. Они оказались связанными с попытками построения синтетических теорий.

Со стороны математики революция в стиле мышления естествоиспытателей была произведена Николаем Ивановичем Лобачевским (1792—1856). Он открыл миру дотоле неизвестную истину, что, помимо Евклидовой геометрии, может существовать другая, реальная геометрия нашего мира, отвечающая всем критериям научности. В сферу психофизики и физиологии выдающийся русский физиолог Иван Михайлович Сеченов (1829—1905) ввел идеи рефлексологии, утверждавшей, что по способу происхождения все акты сознательной и бессознательной жизни суть рефлексы, в которых выделялись два признака: быть орудием различения условий действия и быть регулятором последнего. Сеченов пытался вскрыть психофизиологический механизм логического мышления.

По инициативе выдающегося специалиста по невропатологии, психиатрии и психологии Владимира Михайловича Бехтерева (1857— 1927) в 1918 г. был создан Институт Мозга, который впоследствии возглавила его внучка Наталья Бехтерева. Бехтерев предлагал взглянуть на психические процессы с точки зрения их энергетического содержания, связать психические явления с реакцией на физические и социальные раздражители, обратить энергетический подход на сферу общественных явлений.

Энергетический подход заставлял обращать внимание на влияние космических факторов на исторические события.

Нобелевский лауреат, русский физиолог Иван Петрович Павлов (1849—1938) — родоначальник объективного экспериментального изучения высшей нервной деятельности— выразил свой подход в трех главных положениях: детерминизм, связь динамики с конструкцией, единство анализа и синтеза. Следует особо подчеркнуть, что исследования в области кибернетических систем, моделирующих конкретные аспекты деятельности головного мозга, опирались на результаты естественнонаучных разработок Павлова. Вывод о сигнальной функции психического был основополагающим для развития учения о высшей нервной деятельности. Существо принципа сигнализации состоит в том, что он определяет такие формы приспособления организма, когда последний в своих ответных действиях предвосхищает течение будущих событий. Огромное значение для философии науки имеет и концепция возникновения второй сигнальной системы, понимаемой в качестве физиологической основы абстрактного мышления. Павлов был уверен, если наши ощущения и представления, относящиеся к окружающему миру, есть для нас первые сигналы действительности, конкретные сигналы, то кинестезические раздражения, идущие в кору от речевых органов, есть вторые сигналы, сигналы сигналов.

Отечественный исследователь Петр Кузьмич Анохин (1898—1974), ученик В.М. Бехтерева и И.П. Павлова, ввел в современную культуру и научно обосновал потенциал идеи опережающего отражения. Он исходил из того, что живая материя в процессе эволюции как бы «вписалась» в уже готовую пространственно-временную структуру мира и не могла не отразить на себе ее свойства. Возникла необходимость приспособления к существующим условиям, в процессе которого огромное значение имели внешние временные параметры. Взаимодействия, подчиненные природным ритмам, действуют на организм миллионы лет. Они фиксируются в самом устройстве организмов, благодаря чему он оказываются способным к опережающему отражению.

Примером опережающего отражения может служить следующее: осень, опадает листва, физиологические процессы замедляются, деревья обезвоживаются, готовясь встретить зиму, однако холода еще не наступили. Следовательно, изменение организма (субъекта) произошло раньше, чем на него подействовали внешние обстоятельства (объект).

Опережающее отражение — это реакция живого организма, подготовленная сериями прежних повторяющихся воздействий со стороны неорганического мира, окружающей среды.

Опережающее отражение возможно вследствие разновременности физического (внешнего) и биологического (внутреннего) времени. Оно делает живые системы надежными и устойчивыми в мире, полном изменений. У человека способность к опережающему отражению перерастает в форму научного предвидения и прогностики.

В отечественной науке после острого увлечения проблематикой бессознательного в ее психоаналитическом варианте новый интерес к ней возник благодаря деятельности Дмитрия Николаевича Узнадзе (1886—1950) — грузинского психолога и философа, одного из организаторов Тбилисского университета, который в качестве альтернативной модели фрейдовского «бессознательного» предложил «теорию неосознаваемой психической установки».

Согласно последней, действия, реакции, поступки и мысли человека всегда зависят от особого психического состояния — готовности к данному процессу. Кардинальной формой бессознательного оказывается установка, связанная с направленностью личности на активность в каком-либо виде деятельности, общей предрасположенностью к деятельности. Установка возникает при встрече двух факторов: потребности и ситуации удовлетворения этой потребности. Она определяет направление проявлений психики и характер поведения субъекта. Установка обладает сложной структурой, содержит эмоциональные, смысловые и поведенческие аспекты предрасположенности к восприятию или действию в отношении социальных объектов и ситуаций. Д. Узнадзе экспериментально и теоретически доказал, что установка как неосознаваемая психическая деятельность является составляющим элементом любого акта человеческого поведения. Особенно велика ее роль в творческих процессах, в области межличностного общения, в сфере избирательной целесообразной активности.

Анализируя проблему включения теоретических представлений в культуру в контексте отечественной философии науки, невозможно обойти период деформации института науки в связи с тоталитарным режимом и системой репрессивно-террористического контроля в истории нашей страны, установленного над всеми сферами общества, когда угроза давления ненаучных, идеолого-политических принципов и ориентировок нависала над судьбой не только отдельных ученых, но и целых научных направлений. Широко известный в марксизме тезис о классовой борьбе в науке обернулся многообразными акциями разоблачения «вредительства». Классический тип кабинетного ученого был назван чучелом и пугалом и подвергался всяческой критике. Лозунги типа: «Догнать и перегнать природу!», «Борьба с природой!», «За революцию в природе!» выдавали чудовищно агрессивный настрой лженауки. В контексте лженауки — евгеники — планировалась и борьба за перестройку собственно человеческой природы.

В качестве критерия «истины» выступали идеи и замечания «корифея всех наук» и «отца всех народов» — товарища Сталина. Бесконечный страх, переходящий в ужас перед государственной репрессивной машиной, делал науку угоднической лженаукой. «Отец всех народов» волюнтаристски определял правильность или ошибочность направлений многообразных научных исследований.

Кроме жесткого механизма насилия, советская тоталитарная система использовала еще один специфический механизм — необходимость противодействия «вражеским проискам и элементам». Ситуация, сложившаяся в отечественной философии науки, отличалась ярым идеологическим неприятием открытий квантовой физики и всех следующих из нее мировоззренческих переориентаций, откровенным шельмованием ее сторонников. Причем работы по созданию атомной бомбы, основанные на превращении вещества и энергии и вытекающие из новых теорий, всячески стимулировались, но в то же время готовилась крупномасштабная кампания по обличению новой физики как псевдонауки. То, что она не вылилась в массовые репрессии, объяснилось так: «Физики отбились от своей лысенковщины атомной бомбой».

Однако, идеологическая кампания была развернута. Она имела своей целью освободиться от самостоятельно мыслящих теоретиков, чьи выводы и исследования были малопригодны для подтверждения ортодоксальных норм сталинизма и примитивно сформулированных положений диалектического материализма. Основная часть отечественных физиков разделяла представления копенгагенской школы Бора и Гейзенберга. А философская реакция не скупилась на ярлыки и обвинения в космополитизме, реставрации махизма, отступлении к идеализму и агностицизму. Все открытия квантовой физики огульно именовались чертовщиной, провозглашавшей выводы о «свободе воли» у электрона. Усиление идеологического контроля приводило к отказу от достижений мировой научной мысли, довлела атмосфера резкого неприятия идей новой физики.

Ликвидация урона началась лишь в 60-е гг. XX в., когда в изменившейся социально-политической ситуации, названной «оттепелью», обнаружил себя подлинный интерес к проблемам философии науки в их новой, свободной от диктата идеологии форме. Одновременно возникают и условия взаимодействия с трудами западных мыслителей. Рефлексия над реальными историческими коллизиями включения теоретических представлений в культуру привела к выводам о социокультурной детерминации процесса научного познания и его теоретических компонентов. Для современного уровня развития отечественной философии науки становится ведущей тенденция сопротивления идеологизаторскому подходу, стремление предоставлять решение конкретных вопросов специалистам в области конкретных наук.

  1. Общие закономерности развития науки.

 

Будучи детерминирована в конечном счете общественной практикой и ее потребностями, наука вместе с тем развивается по своим собственным закономерностям, т. е. обладает относительной самостоятельностью и внутренней логикой своего развития.

Преемственность в развитии научных знаний

Данная закономерность выражает неразрывность всего познания действительности как внутренне единого процесса смены идей, принципов, теорий, понятий, методов научного исследования. При этом каждая, более высокая ступень в развитии науки возникает на основе предшествующей ступени с удержанием всего ценного, что было накоплено раньше, на предшествующих ступенях.

Объективной основой преемственности в науке является то реальное обстоятельство, что в самой действительности имеет место поступательное развитие предметов и явлений, вызываемое внутренне присущими им противоречиями. Воспроизведение реально развивающихся объектов, осуществляемое в процессе познания, также происходит через диалектически отрицающие друг друга теории, концепции и другие формы знания.

Содержание отрицаемых знаний не отбрасывается полностью, а сохраняется в новых концепциях в «снятом» виде, с удержанием положительного. Новые теории не отрицают полностью старые, потому что последние с определенной степенью приближения отображают объективные закономерности действительности в своей предметной области.

Диалектическое отношение новой и старой теории в науке нашло свое обобщенное отражение в принципе соответствия, впервые сформулированном Нильсом Бором. Согласно данному принципу, смена одной частнонаучной теории другой обнаруживает не только различия, но и связь, преемственность между ними. Новая теория, приходящая на смену старой, в определенней форме — а именно в качестве предельного случая — удерживает ее. Так, например, обстояло дело в соотношении «классическая механика — квантовая механика». В процессе развития научного познания возможен обратный переход от последующей теории к предыдущей, их совпадение в некоторой предельной области, где различия между ними оказываются несущественными.

Важный аспект преемственного развития науки состоит в том, что всегда необходимо распространять истинные идеи за рамки того, на чем они опробованы. Таким образом, каждый шаг науки подготавливается предшествующим этапом, и каждый ее последующий этап закономерно связан с предыдущим. Заимствуя достижения предшествующей эпохи, наука непрерывно движется дальше. Однако это не есть механическое, некритическое заимствование; преемственность не есть простое перенесение старых идей в новую эпоху, пассивное заимствование полностью всего содержания используемых теорий, гипотез, методов исследования. Он обязательно включает в себя момент критического анализа и творческого преобразования. Преемственность представляет собой органическое единство двух моментов: наследования и критической переработки.

Процесс преемственности в науке (но не только в ней) может быть выражен в терминах «традиция» (старое) и «новация» (новое). Это две противоположные диалектически связанные стороны единого процесса развития науки: новации вырастают из традиций, находятся в них в зародыше; все положительное и ценное, что было в традициях, в «снятом виде» остается в новациях.

Новация (в самом широком смысле) — это все то, что возникло впервые, чего не было раньше. Характерный пример новаций — научные открытия, фундаментальные, «сумасшедшие» идеи и концепции — квантовая механика, теория относительности, синергетика и т. п.

Традиции в науке — знания, накопленные предшествующими поколениями ученых, передающиеся последующим поколениям и сохраняющиеся в конкретных научных сообществах, научных школах, направлениях, отдельных науках и научных дисциплинах. Множественность традиций дает возможность выбора новым поколениям исследователей тех или иных из них. А они могут быть как позитивными (что и как воспринимается), так и негативными (что и как отвергается). Жизнеспособность научных традиций коренится в их дальнейшем развитии последующими поколениями ученых в новых условиях.

Единство количественных и качественных изменений в развитии науки

Преемственность научного познания не есть однообразный, монотонный процесс. В определенном срезе она выступает как единство постепенных, спокойных количественных и коренных, качественных (скачки, научные революции) изменений. Эти две стороны науки тесно связаны и в ходе ее развития сменяют друг друга как своеобразные этапы данного процесса.

Этап количественных изменений науки — это постепенное накопление новых фактов, наблюдений, экспериментальных данных в рамках существующих научных концепций. В связи с этим идет процесс расширения, уточнения уже сформулированных теорий, понятий и принципов.

На определенном этапе этого процесса и в определенной его «точке» происходит прерыв непрерывности, скачок, коренная ломка фундаментальных законов и принципов вследствие того, что они не объясняют новых фактов и новых открытий. Это и есть коренные качественные изменения в развитии науки, т. е. научные революции.

Во время относительно устойчивого развития науки происходит постепенный рост знания, но основные теоретические представления остаются почти без изменений. В период научной революции подвергаются ломке именно эти представления. Революция в той или иной науке представляет собой период коренной ломки основных, фундаментальных концепций, считавшихся ранее незыблемыми, период наиболее интенсивного развития, проникновения в область неизвестного, скачкообразного углубления и расширения сферы познанного.

Дифференциация и интеграция наук

Развитие науки характеризуется диалектическим взаимодействием двух противоположных процессов — дифференциацией (выделением новых научных дисциплин) и интеграцией (синтезом знания, объединением ряда наук — чаще всего в дисциплины, находящиеся на их «стыке»). На одних этапах развития науки преобладает дифференциация (особенно в период возникновения науки в целом и отдельных наук), на других — их интеграция, это характерно для современной науки.

Дифференциация наук является закономерным следствием быстрого увеличения и усложнения знаний. Она неизбежно ведет к специализации и разделению научного труда. Последние имеют как позитивные стороны (возможность углубленного изучения явлений, повышение производительности труда ученых), так и отрицательные (особенно «потери связи целого», сужение кругозора — иногда до «профессионального кретинизма»). Одновременно с процессом дифференциации происходит и процесс интеграции — объединения, взаимопроникновения, синтеза наук и научных дисциплин, объединение их (и их методов) в единое целое, стирание граней между ними. Это особенно характерно для современной науки, где сегодня бурно развиваются такие синтетические, общенаучные области научного знания, как кибернетика, синергетика и др., строятся такие интегративные картины мира, как естественнонаучная, общенаучная, философская (ибо философия также выполняет интегративную функцию в научном познании).

Взаимодействие наук и их методов

Разделение науки на отдельные области было обусловлено различием природы вещей, закономерностей, которым последние подчиняются. Различные науки и научные дисциплины развиваются не независимо, а в связи друг с другом, взаимодействуя по разным направлениям. Одно из них — это использование данной наукой знаний, полученных другими науками.

Один из важных путей взаимодействия наук — это взаимообмен методами и приемами исследования, т. е. применение методов одних наук в других. Особенно плодотворным оказалось применение методов физики и химии к изучению в биологии живого вещества, сущность и специфика которого одними только этими методами, однако, не была «уловлена». Для этого нужны были свои собственные — биологические методы и приемы их исследования.

Следует иметь в виду, что взаимодействие наук и их методов затрудняется неравномерностью развития различных научных областей и дисциплин. Методологический плюрализм — характерная особенность современной науки, благодаря которой создаются необходимые условия для более полного и глубокого раскрытия сущности, законов качественно различных явлений реальной действительности.

Наиболее быстрого роста и важных открытий сейчас следует ожидать как раз на участках «стыка», взаимопроникновения наук и взаимного обогащения их методами и приемами исследования. Этот процесс объединения усилий различных наук для решения важных практических задач получает все большее развитие. Это магистральный путь формирования «единой науки будущего».

Углубление и расширение процессов математизации и компьютеризации

Одна из важных закономерностей развития науки — усиление и нарастание сложности и абстрактности научного знания, углубление и расширение процессов математизации и компьютеризации науки как базы новых информационных технологий, обеспечивающих совершенствование форм взаимодействия в научном сообществе.

Сущность процесса математизации, собственно, и заключается в применении количественных понятий и формальных методов математики к качественно разнообразному содержанию частных наук. Последние должны быть достаточно развитыми, зрелыми в теоретическом отношении, осознать в достаточной мере единство качественного многообразия изучаемых ими явлений. Именно этим обстоятельством, прежде всего, определяются возможности математизации данной науки.

Чем сложнее данное явление, чем более высокой форме движения материи оно принадлежит, тем труднее оно поддается изучению количественными методами, точной математической обработке законов своего движения. Так, невозможно математически точно выразить рост сознательности человека, степень развития его умственных способностей, эстетические достоинства художественных произведений и т. п.

Применение математических методов в науке и технике за последнее время значительно расширилось, углубилось, проникло в считавшиеся ранее недоступными сферы. Эффективность применения этих методов зависит как от специфики данной науки, степени ее теоретической зрелости, так и от совершенствования самого математического аппарата.

Абстрактные формулы и математический аппарат не должны заслонять (а тем более, вытеснять) реальное содержание изучаемых процессов. Применение математики нельзя превращать в простую игру формул, за которой не стоит объективная действительность. Вот почему всякая поспешность в математизации, игнорирование качественного анализа явлений, их тщательного исследования средствами и методами конкретных наук ничего, кроме вреда, принести не могут. Рассматривая проблему формы и содержания, В, Гейзенберг, в частности, писал: «Математика — это форма, в которой мы выражаем наше понимание природы, но не содержание. Когда в современной науке переоценивают формальный элемент, совершают ошибку и, притом, очень важную»[2].

В настоящее время одним из основных инструментов математизации научно-технического прогресса становится математическое моделирование. Его сущность и главное преимущество состоит в замене исходного объекта соответствующей математической моделью и в дальнейшем ее изучении (экспериментированию с нею) на ЭВМ с помощью вычислительно-логических алгоритмов.

Теоретизация и диалектизация науки

Наука (особенно современная) развивается по пути синтеза абстрактно-формальной (математизация и компьютеризация) и конкретно-содержательной сторон познания. Вторая из названных сторон выражается, в частности, терминами «теоретизация» и «диалектизация».

Для современной науки характерно нарастание сложности и абстрактности знания, теоретические разделы некоторых научных дисциплин (например, квантовой механики, теоретической физики и др.) достигли такого уровня, когда целый ряд их результатов не может быть представлен наглядно. Все большее значение приобретают абстрактные, логико-математические и знаковые модели, в которых определенные черты моделируемого объекта выражаются в весьма абстрактных формулах. Такой процесс происходит во всех науках, и переход на все более высокие уровни абстрагирования усиливается и расширяется.

Диалектизация науки как ее важнейшая закономерность означает все более широкое внедрение во все сферы научного познания идеи развития (а значит, и времени). Причем, именно во все науки, а не только в так называемые «исторические науки» — в геологию, биологию, астрофизику, историю и т. п.

Сегодня многие мыслящие представители частных наук все более четко осознают, что «процесс диалектизации давно прошел» и продолжает расширяться и углубляться — хочется это кому-то или не хочется, нравится кому-то диалектика или нет. Поэтому необходимо как можно скорее и основательнее «вытравлять» именно извращения диалектики (а не ее саму), дальше творчески развивать диалектический метод, вернуть ту свойственную ему роль, которую он всегда играл в мировой философии, — роль мощного методологического орудия — «стоящего на стороне субъекта средства» (Гегель), с помощью которого он познает и преобразует окружающую действительность, а «заодно» изменяется и сам.

Ускоренное развитие науки

Говоря о важной роли науки в жизни общества, Ф. Энгельс в середине XIX в. обратил внимание на то обстоятельство, что наука движется вперед пропорционально массе знаний, унаследованных ею от предшествующего поколения. Позднее он же, конкретизируя данное положение, подчеркнул, что со времени своего возникновения (т. е. с XVI—XVII вв.) развитие наук усиливалось пропорционально квадрату расстояния (во времени) от своего исходного пункта.

Констатация экспотенциального закона развития науки (т. е. ускорения его темпов) и есть одна из общих закономерностей ее развития. Данная закономерность проявляется в увеличении общего числа научных работников, научных учреждений и организаций, публикаций, выполняемых научных работ и решаемых проблем, материальных затрат на науки или (и) доходов от нее и т. п.

Ускоренное развитие науки есть следствие ускоренного развития производительных сил общества. Это привело к непрерывному накоплению знаний, в результате чего их масса, находящаяся в распоряжении ученых последующего поколения, значительно превышает массу знаний предшествующего поколения. По разным подсчетам (и в зависимости от области науки), сумма научных знаний удваивается в среднем каждые 5—7 лет (а иногда и в меньшие сроки).

Одним из критериев ускорения темпов развития науки является сокращение сроков перехода от одной ступени научного познания к другой, от научного открытия к его практическому применению. Если в прошлом открытие и его применение отделялись десятками и даже сотнями лет, то теперь эти сроки исчисляются несколькими годами и даже месяцами.

Дата: 2018-12-21, просмотров: 329.