Строение и функции органелл клетки. Включения
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

1. Эндоплазматическая сеть (эндоплазматический ретикулум, ЭПС) - одномембранные органеллы, общего типа, которые представляют собой каналы плазматической мембраны разной формы и величины. ЭПС бывает гладкая и гранулярная.

Гладкая ЭПС - мембранные мешочки.

Функции: 1) транспорт веществ к комплексу Гольджи; 2) депонирующая. В мышечных клетках накапливает Ca2+, необходимый для мышечных сокращений; 3) детоксикационная - в клетках печени участвует в обезвреживании ядовитых веществ; 4) синтезирует углеводы и липиды, которые поступают внутрь мембран;

Гранулярная (ГрЭПС или эргастоплазма) - мембранные мешочки на которых располагаются рибосомы. В клетке располагается вокруг ядра и наружная ядерная оболочка переходит в мембраны ГрЭПС.

Функции: 1) делит клетку на отсеки, в которых протекают различные химические процессы; 2) транспортирует вещества к комплексу Гольджи; 3) синтезирует белки, которые поступают внутрь каналов ЭПС, где они приобретают свою вторичную и третичную структуры.

2. Аппарат Гольджи - одномембранная органелла общего типа, которая состоит из цистерн, мелких и крупных вакуолей. Диктиосома - стопка цистерн. Все диктиосомы клетки соединяются между собой.

Функции: 1)обезвоживание, накопление и упаковка веществ в мембраны; 2)транспорт веществ из клетки; 3)синтезирует полисахариды и присоединяет их к белкам с образованием гликопротеидов, которые обновляют гликокаликс. Гликопротеин (муцин) является важной частью слизи. 4)образует первичные лизосомы;5)формирует включения; 6)участвует в обмене веществ в клетке; 7)формирует пероксисомы или микротельца; 8)сборка и "рост" мембран, которые затем окружают продукты секреции. 9)участвует в секреции воска растительных клеток.

В растительных клетках диктиосомы могут располагаться отдельными мембранами.

3. Лизосомы - одномембранные органеллы общего типа. Мембранные пузырьки, содержащие расщепляющие ферменты.

Классификация лизосом: первичные - лизосомы, которые содержат только активный фермент (напр. кислую фосфатазу); вторичные - это первичные лизосомы вместе с веществом, которое переваривается (аутофагосомы - расщепляют внутренние части клетки, выполнившие свои функции; гетерофагосомы - расщепляют вещества и структуры, попавшие в клетку). Остаточные тельца - вторичная лизосома, содержащая не переваренный материал.

Функции:1)внутриклеточное пищеварение; 2) обеспечивают разрушение ненужных структур в клетке; 3)выделяют ферменты из клетки наружу например, при метаморфозе (у насекомых, амфибий), при замене хряща костной тканью – эти процессы называются физиологическим лизисом;                     4) эндогенное питание в условиях голодания. 5) участвуют в детоксикации чужеродных веществ поглощаемых фаго- и пиноцитозом с образованием телолизосом или остаточных телец.

Известно более 25 наследственных заболеваний, связанных с патологией лизосом.

Цитолизис - разрушение клеток путем полного или частичного их растворения как в нормальных условиях (например, при метаморфозе), так и при проникновении болезнетворных организмов, неполноценном питании, недостатке и избытке кислорода, неправильном применении антибиотиков и при действии токсических веществ (патологический лизис).

4. Митохондрии - органеллы общего типа, имеющие двух мембранное строение. Внешняя мембрана гладкая, внутренняя - образует различной формы выросты - кристы. В матриксе митохондрии (полужидком веществе) между кристами находятся ферменты, рибосомы, ДНК, РНК, которые участвуют в синтезе митохондриальных белков. На внутренней мембране видны грибовидные тела - АТФ-сомы, которые являются ферментами, образующими молекулы АТФ.

Функции: 1) синтез АТФ; 2) участвуют в углеводном и азотистом обмене:

а) на наружной мембране и рядом в гиалоплазме идет анаэробное окисление (гликолиз);

б) на внутренней мембране - кристах - идут процессы, связанные с окислительным циклом трикарбоновых кислот и дыхательной цепью переноса электронов, т.е. клеточное дыхание, в результате которого синтезируется АТФ;

3) имеют собственные ДНК, РНК и рибосомы, т.е. сами могут синтезировать белки. 4) синтез некоторых стероидных гормонов.

5. Рибосомы - сложные рибонуклеопротеиды (РНП). Общего типа, немембранные органеллы, в состав которых входят белки и р-РНК. Субъединицы образуются в ядрышке. У эукариот рибосомы объединяются в полисомы. Полисома - образование из большого числа рибосом на одной и-РНК (синтезируют один тип белка, но с разной скоростью). В состав большой субъединицы входит 2 молекулы р-РНК (в составе одной молекулы находится 3000 нуклеотидов, в составе другой - 100 - 150 нуклеотидов) и 34-36 молекул белков (12 различных видов). В состав малой субъединицы входит 1 молекула р-РНК (которая имеет 1500 нуклеотидов) и 21-24 молекулы белка (12 различных видов).

При укладке тяжа РНК на субъединицах образуются активные центры:

В малой субъединице: 1) и-РНК - связывающий; 2)удерживающий аминоацил - т-РНК.

В большой субъединице: 1) аминоацильный- центр узнавания кодон-антикодон. 2) пептидный или пептидильный, в котором между аминокислотами образуются пептидные связи.

Между этими двумя центрами находится центр, перекрывающий эти два - пептидилтранферазный, который катализирует образование пептидных связей. Рибосомы эукариотической клетки имеют коэффициент седиментации (скорость осаждения при ультрацентрифугировании или S - коэффициент Сведберга) - 80S (60S - большая субъединица и 40S - малая). Прокариотические клетки, а так же рибосомы митохондрий и пластид имеют - 70S (50S - большая субъединица и 30S - малая).

Функция: биосинтез белка. Свободные полисомы синтезируют белок для самой клетки, а прикрепленные на ЭПС - синтезирующют белок на экспорт из клетки.

6. Микротрубочки - полые белковые цилиндры, растут с одного конца за счет присоединения тубулиновых глобул. Немембранные, общего типа органеллы.

Функции: 1) входят в состав клеточного центра: комплексом 9+0 (девять групп по одной, две или три, в центре - нет); 2) входят в состав ресничек и жгутиков, комплексом 9+2 (девять по две и в центре две); 3) участвуют в формировании нитей веретена деления; 4) осуществляют внутриклеточный транспорт (например, от ЭПС пузырьки движутся к комплексу Гольджи); 5) формируют цитоскелет.

7. Пероксисомы или микротельца  - одномембранные общего типа органеллы.

Функции: 1)защитная - нейтрализует перекись, которая является токсическим веществом для клеток; 2) образует депо ряда ферментов (например, каталазы, пероксидазы и др.), которые играют роль при превращении жиров в углеводы и катаболизме пуринов.

8. Микрофиламенты - немембранные общего типа органеллы - тонкие белковые (актиновые, которых выявлено около 10 видов) нити.

Функции: 1) образуют пучки для опоры внутриклеточных структур;

2) образуют сократительные системы для клеточной подвижности.

9. Пластидыдвух мембранные органеллы растительных клеток общего типа, разделяются на три типа:

а) лейкопласты - микроскопические органеллы, имеющие двух мембранное строение. Внутренняя мембрана образует 2-3 выроста. Форма округлая. Бесцветны.

Функции: центр накопления крахмала и других веществ. На свету преобразуются в хлоропласты.

б) хромопласты - микроскопические органеллы, имеющие двумембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов принимают форму кристаллов каротиноидов, типичную для данного вида растения. Окраска красная, оранжевая, желтая.

Функции: содержат красный, оранжевый и желтый пигменты (каротиноиды). Много в зрелых плодах томатов и некоторых водорослей; окрашивают венчик цветков.

в) хлоропласты - микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин - тилакоидов стромы и тилакоидов гран. Тилакоид - уплощенный мешочек. Грана - это стопка тилакоидов. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты - хлорофилл и каротиноиды. В белково-липидном матриксе находятся собственные рибосомы, ДНК, РНК, зерна крахмала. Форма хлоропластов чечевицеобразная. Окраска зеленая.

Функции: фотосинтезирующие, содержат хлорофилл. На гранах идет световая фаза фотосинтеза, в строме - темновая фаза.

10. Реснички - многочисленные цитоплазматические выросты на поверхности мембраны. Немембранные специальные органеллы.

Функции: 1)удаление частичек пыли (реснитчатый эпителий верхних дыхательных путей); 2)передвижение (одноклеточные организмы).

11. Жгутики - немембранные специальные органеллы, единичные цитоплазматические выросты на поверхности клетки.

Функции: передвижение (сперматозоиды, зооспоры, одноклеточные организмы).

12. Миофибриллы - тонкие нити до 1 см длиной и больше. Немембранные специальные органеллы.

Функции: служат для сокращения мышечных волокон, вдоль которых они расположены.

13. Клеточный центр - ультрамикроскопическая органелла немембранного строения, общего типа. Состоит из двух центриолей. Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг к другу. Вокруг центриолей располагается матрикс. Полагают, что в нем есть собственная ДНК (подобная митохондриальной ДНК), РНК и рибосомы.

Функции: 1) принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити протягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр. 2) является важной частью в цитоскелете клетки.

14. Вакуоль - мембранная органелла общего типа. Мешок, образованный одинарной мембраной, который называется тонопластом. В вакуолях содержится клеточный сок - концентрированный раствор различных веществ, таких, как минеральные соли, сахара, пигменты, органические кислоты и ферменты. В зрелых клетках вакуоли обычно бывают большими.

Функции: хранение различных веществ, в том числе и конечных продуктов обмена. От содержимого вакуоли в сильной степени зависят осмотические свойства клетки. Иногда вакуоль выполняет функции лизосом.

 

Включения.

В цитоплазме клеток находятся непостоянные компоненты – включения, которые могут быть трофические, секреторные и специальные. Трофические или запасающие клеткой вещества, которые необходимы для питания. Например, капли жира, белковые гранулы, гликоген (который накапливается в клетках печени). Секреторные – это как правило различные секреты. Например, секреты молочных, потовых и жировых желез. Специальные – это пигменты. Например, гемоглобин в эритроцитах, липофусцин (пигмент старения), меланин в меланоцитах кожи.

Строение и функции ядра.

Впервые ядро было открыто и описано в 1833 году англичанином Р.Броуном.

Ядро в клетке выполняет основные функции:

1) хранение и воспроизведение наследственной информации,

2) регуляция обмена веществ в клетке.

Форма ядра может быть шаровидная, округлая, палочковидная и лопастная. Форма ядра зависит как от формы клетки, так и от функции, то есть чем активнее идут физиологические процессы в клетке, тем сложнее форма ядра. При увеличении объема ядра, увеличивается и объем цитоплазмы, и это соотношение называется ядерно-плазменным отношением и играет большую роль при делении клеток.

В состав ядра входят: ядерная оболочка (кариолемма), ядерный сок (кариоплазма), хроматин и ядрышки.

Ядерная оболочка – отделяет содержимое ядра от цитоплазмы. Ядерная оболочка состоит из двух мембран: наружной и внутренней, которые соединяются вместе в области пор. При повышении скорости обменных процессов между ядром и цитоплазмой количество пор увеличивается, т.е. можно судить об активности ядра по количеству пор. Из ядра через ядерные поры выходят: и-РНК, т-РНК, субъединицы рибосом. В ядро из цитоплазмы поступают ядерные и рибосомальные белки, нуклеотиды, жиры, углеводы, АТФ, вода и ионы. Наружная ядерная оболочка соединяется с гранулярной эндоплазматической сетью. Внутренняя ядерная оболочка контактирует с кариоплазмой (ядерным соком), лишена рибосом и в некоторых местах соединяется с хроматином.

Ядерный сок (кариоплазма) – это коллоидный раствор белков, нуклеиновых кислот, углеводов, ферментов и ионов, он более вязкий, чем гиалоплазма. Ядерный сок обеспечивает нормальное функционирование генетического материала. Во время деления ядерный сок смешивается с цитоплазмой.

Ядрышки – это округлые, сильно уплотненные, не ограниченные мембраной участки ядра. Форма их, размеры и количество зависит от функционального состояния ядра. В клетке, выполняющей функцию синтеза большого количества белка, в ядре будет несколько ядрышек или они будут крупные и рыхлые, т.е. функция ядрышка – это синтез р-РНК и сборка малой и большой субъединиц рибосом. В составе ядрышка находится: 80% белка, 10-15% РНК, небольшое количество ДНК и другие химические компоненты. В профазу деления клетки субъединицы рибосом через ядерные поры выходят в цитоплазму, ДНК ядрышка упаковывается на хромосомы, имеющие вторичную перетяжку или ядрышковый организатор, и соответственно, ядрышко как структура распадается и становится не видимой структурой, поэтому иногда говорят, что оно «растворяется».

Хроматин – это комплекс ДНК и белков, в основном гистоновых. Молекулы гистонов с ДНК образуют группы – нуклеосомы. Каждая нуклеосома состоит из 8 молекул гистонов(Н; Н; Н3; Н4) по две молекулы вокруг которых закручен участок ДНК. Молекула ДНК, соединенная с нуклеосомой, образует ДНП (дезоксирибонуклеопротеид)– это наименьшая единица хромосомы. В состав хроматина входят РНК, ионы Ca2+  и Mg 2+, а также фермент ДНК- полимераза, необходимый для репликации ДНК. Во время деления ядра хроматин спирализуется и становится видимым в световой микроскоп, т.е. начинают формироваться хромосомы (гр.chromo- цвет, soma- тело.) Если всю ДНК одной соматической клетки человека (46 хромосом) вытянуть в одну нить, то получится длина 164-174 см, т.е. хромосомы ядер представляют собой сильно спирализованную ДНП.

Перед делением клетки хроматин спирализуется, упаковывается и становится видимым.

При образовании хромосом существуют несколько упаковок хроматина.

Первая упаковка- это нуклеосомная организация в виде «бусин на нити». Размер нуклеосомы около 20 нм.

Вторая упаковка хроматина, когда нити ДНП сворачиваются вокруг себя засчет гистонового белка (Н1)- это вторичная фибрилла диаметром около 20-30нм.

Третичный уровень упаковки - это хромонема (греч. chroma+nematos – окрашенная нить или струна), т.е. закрученные нити фибрилл уже толщиной 200-400 нм.

Четвертичная упаковка - это хроматида, т.е. пара скрученных хромонем диаметром около 1-2 мкм.

Хромосома это пара хроматид.

Материнская хроматида - это и есть дочерняя хромосома.

В хромосоме имеются эу- и гетерохроматиновые участки. Диффузный или деконденсированный хроматин – эухроматин – он генетически активен, т.к. с него может идти транскрипция. Конденсированные участки хроматина – гетерохроматин – это неактивные участки хромосом. Чередование эу- и гетерохроматиновых участков используют для идентификации хромосом.

Хромосома на стадии метафазы имеет вид нитей или палочек, максимально спирализованных и состоящих из двух хроматид, соединенных первичной перетяжкой или центромерой. В центральной части центромеры находятся кинетохоры, к которым во время митоза прикрепляются микротрубочки веретена деления. Некоторые хромосомы имеют вторичную перетяжку или ядрышковый организатор, контролирующий образование ядрышек.

 

Дата: 2018-12-21, просмотров: 2867.