Класс Насекомые. Классификация. Характерные черты организации. Медицинское значение

Для представителей класса Насекомые (Insecta) характерно разделение тела на голову, грудь и брюшко. Голова несет простые или фасеточные глаза, пару членистых усиков и пару щупиков. Ротовой аппарат грызущего-жующего, лижущего-сосущего, колюще-сосущего типов состоит из пары верхних и пары нижних челюстей, верхней и нижней губы.
Грудь состоит из трех сегментов. С брюшной стороны каждый сегмент несет пару конечностей различного типа. Со спинной стороны предпоследний и последний сегменты несут по паре крыльев. Первая пара крыльев может быть видоизменена в жесткие надкрылья, вторая — превратиться в жужжальца. Крылья могут отсутствовать (первичная или вторичная бескрылость).
Брюшко членистое, конечностей не имеет. Дыхание трахейное. Выделительная система представлена мальпигиевыми сосудами (слепо заканчивающиеся выросты кишечника на границе средней и задней кишки) и жировым телом («почка накопления»)
Развитие с полным (яйцо — личинка — куколка — имаго) или с неполным (яйцо — личинка — имаго) превращением.

Пищеварит система: передняя кишка – начин с рот полости и подраздел на глотку и пищевод, задний отдел которого образует зоб и желудок, к ней также относ слюнные железы (до 3 пар). Средняя кишка лишена пищеварит желез. Задняя заканчивается анальным отверстием. Кровенос система: развита слабо, сердце трубковидное, состоит из многих камер. Нерв система: сост из головного мозга (состоит из 3 отделов), окологлоточных коннектив, брюшной нерв цепочки. Органы чуств – осязания, обоняния, ВКУСА, ЗРЕНИЯ, СЛУХА, в основе всех органов чувств лежит сенсилла (клетка или группа чувствительных рецепторных клеток). Насекомым свойственно инстинктное поведение. Раздельнополые организмы.
II. Подтип Трахейнодышащие (Tracheata)





Класс Насекомые

* Отряд Вши  * Отряд Блохи  * Отряд Двукрылые (- Семейство Комариные - Семейство Бабочницы - Семейство Настоящие мухи)

Экзаменационный билет №8

1. Экспрессия генов в процессе биосинтеза белка. Регуляция экспрессии генов у прокариот и эукариот.

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.  Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации.

Для того чтобы информация, заложенная в ДНК, превратилась в жизненные функции, она должна быть превращена в действия, которые по частям представлены активностью белков-ферментов, а в полной мере — размножающимся организмом.

Переход представляет собой экспрессию генетической информации и осуществляется в два этапа. На первом действует аппарат РНК, включающий транскрипцию с ДНК на РНК с помощью РНК-полимеразы и трансляцию с РНК (второй этап), с помощью рибосомы, в белки. Именно эти последние и используются для образования как компонентов клетки, в том числе клеточных структур, так и ферментов. Действие РНК-полимеразы основано нa матричном копировании необходимого участка ДНК (гена или группы связанных генов — оперона) в однонитевую нить матричной РНК (мРНК), которая переносится затем к рибосоме, точнее, рибосомы нанизываются на нить мРНК с образованием полирибосомы. Синтез белка осуществляется путем присоединения в рибосоме молекулы транспортной РНК (тРНК) с аминокислотой к соответствующему участку на нити мРНК с образованием полипептидной цепи, соответствующей последовательности нуклеотидов мРНК.

Между аминокислотами и основаниями существует «генетический код», в котором каждой аминокислоте соответствуют кодоны, содержащие три нуклеотида.

РНК синтезируется на матрице ДНК посредством фермента РНК-полимеразы. Связывание начинается с участка, называемого промотором. Промотор может быть сильным и слабым. Сильный промотор инициирует синтез иРНК часто, слабый - гораздо реже. С другой стороны, промотор может быть регулируемым и нерегулируемым. Двойная нить (дуплекс) ДНК в этом месте расплетается, и считывается лишь одна нить. Синтез мРНК требует затраты одного эквивалента АТФ на нуклеотид. Промотор может начинать отдельный ген или же комбинацию генов для ферментов, объединенных общей функцией, — оперон. В конце гена или оперона располагается стоп-сигнал, позволяющий РНК-полимеразе отделиться.

У эукариот гены состоят из кодирующих участков, экзонов, и разделены некодирующими — интронами. Образованная в ядре мРНК претерпевает процессинг (созревание), при котором, в частности, из нее удаляются некодирующие участки, и лишь затем она поступает для синтеза белка в рибосомы. Все это обусловливает значительное усложнение элементарного процесса.

Особенности Регуляция экспрессии генов эукариот: Особенностью прокариот является транскрибирование мРНК со всех структурных генов оперона в виде одного полицистронного транскрипта, с которого в дальнейшем синтезируются отдельные пептиды. Экспрессия генов у прокариот регулируется главным образом на уровне транскрипции. Роль сигнальных веществ для запуска транскрипции играют молекулы-эффекторы, представляющие собой низкомолекулярные соединения. Индукция и репрессия представляют собой разные стороны одного и того же явления. Малые молекулы, индуцирующие образование ферментов, способных метаболизировать их, называются индукторами. Те же, которые предотвращают образование ферментов, способных синтезировать их, -корепрессорами.
Молекулы-эффекторы не могут вступать в прямое взаимодействие с ДНК, посредником для них служит специальный регуляторный белок . Регуляторный белок, который связывается с ДНК в отсутствии индуктора, называется репрессором .

Особенности Регуляция экспрессии генов эукариот:

У эукариотических организмов механизм регуляции транскрипции гораздо более сложен. В результате клонирования генов эукариот обнаружены специфические последовательности, принимающие участие в транскрипции и трансляции.

Для эукариотической клетки характерно:

1. Наличие интронов и экзонов в молекуле ДНК.

2. Созревание и-РНК - вырезание интронов и сшивка экзонов.

3. Наличие регуляторных элементов, регулирующих транскрипцию, таких как: а) промоторы - 3 вида, на каждый из которых садится специфическая полимераза б) модуляторы - последовательности ДНК, усиливающие уровень транскрипции; в) усилители - последовательности, усиливающие уровень транскрипции и действующие независимо от своего положения относительно кодирующей части гена и состояния начальной точки синтеза РНК; г) терминаторы - специфические последовательности, прекращающие и трансляцию, и транскрипцию.

2. Эмбриональная индукция. Дифференциация и интеграция в развитии. Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.

Классическими считают опыты немецкого ученого Г. Шпемана и его сотрудников (1924) на зародышах амфибий. Для того чтобы иметь возможность проследить за судьбой клеток определенного участка зародыша, Шпеман использовал два вида тритонов: тритона гребенчатого, яйца которого лишены пигмента и потому имеют белый цвет, и тритона полосатого, яйца которого благодаря пигменту имеют желто-серый цвет.

Один из опытов заключается в следующем: кусочек зародыша из области дорсальной губы бластопора на стадии гаструлы тритона гребенчатого пересаживают на боковую или вентральную сторону гаструлы тритона полосатого (рис. 8.8). В месте пересадки происходит развитие нервной трубки, хорды и других органов. Развитие может достичь довольно продвинутых стадий с образованием дополнительного зародыша на боковой или вентральной стороне зародыша реципиента. Дополнительный зародыш содержит в основном клетки зародыша реципиента, но светлые клетки зародыша-донора тоже обнаруживаются в составе различных органов.

Из этого и подобных опытов следует несколько выводов. Во-первых, участок, взятый из спинной губы бластопора, способен направлять или даже переключать развитие того материала, который находится вокруг него, на определенный путь развития. Он как бы организует, или индуцирует, развитие зародыша как в обычном, так и в нетипичном месте. Во-вторых, боковая и брюшная стороны гаструлы обладают более широкими потенциями к развитию, нежели их презумптивное (предполагаемое) проспективное направление, так как вместо обычной поверхности тела в условиях эксперимента там образуется целый зародыш. В-третьих, достаточно точное строение новообразованных органов в месте пересадки указывает на эмбриональную регуляцию. Это означает, что фактор целостности организма приводит к достижению хорошего конечного результата из нетипичных клеток в нетипичном месте, как бы управляя процессом, регулируя его в целях достижения этого результата.

2. Методы диагностики паразитарных болезней.

В основе диагностики паразитарных болезней лежат лабораторные методы исследования, которые условно можно разделить на несколько групп:

1) Макроскопические методы – основаны на обнаружении на теле или в выделениях больных достаточно крупных паразитов или их фрагментов, 2) Микроскопические методы – основаны на микроскопировании различных биологических сред с целью выявления паразитов или их яиц. Микроскопические методы обнаружения простейших и гельминтов включают исследования: мазков крови (малярия, африканский трипаносомоз), фекалий (амебиаз, балантидиаз, кишечный трихомоноз, кишечные гельминтозы), дуоденального содержимого (лямблиоз), мочи (урогенитальный шистосомоз), мокроты (парагонимоз), выделений мочеполовых путей (урогенитальный трихомоноз); пунктатов кожных поражений (кожный лейшманиоз), лимфоузлов (токсоплазмоз), спинно-мозговой жидкости (трипаносомоз); · метод биологических проб – заражение лабораторных животных внутрибрюшинным. 3) Иммунологические методы – используются, как правило, при внутриклеточной и тканевой локализации паразита и основаны на иммунных реакциях хозяина на присутствие паразита (выработка и появление в крови антител). Иммунологические методы используются при диагностике токсоплазмоза, урогенитального трихомоноза у мужчин, эхинококкоза, альвеококкоза, трихинеллеза.


Экзаменационный билет №9

1. Механизмы генотипического определения и дифференциации признака пола в развитии.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина - одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина - Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра. Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) - одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофилы, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A - бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития. Нерасхождение хромосом изучаются как в мейозе, так и в митозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому. Единственной функцией его считается дифференцировка гонад. Вторичные половые признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами. Развитие мужских вторичных половых признаков контролирует тестостерон. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны к действию тестостерона, в результате чего взрослый организм приобретает черты, характерные для женского пола. При этом внутренние половые органы оказываются недоразвитыми и такие особи полностью стерильные. Таким образом, в определении и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины - только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью инактивирована одна Х-хромосома. Х-хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. при этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаики (пример, черепаховые кошки).Таким образом, пол человека представляет собой менделирующий признак, наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX).

2. Репаративная регенерация и способы ее осуществления. Проявление регенерационной способности в филогенезе. Соматический эмбриогенез. Аутотомия.

Регенерация – процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. 

Репаративная регенерация – восстановление структур после травмы или действия других повреждающих факторов. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии.

Существует несколько способов (разновидностей) репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, регенерационную и компенсаторную гипертрофию. Гипертрофию и гиперплазию клеток органов и тканей, а также возникновение и рост опухолей относят к гипербиотическим процессам - процессам избыточного роста и размножения клеток, тканей и органов.

Гипертрофия - увеличение размеров органа или ткани за счет увеличения размера каждой клетки. Выделяют рабочую (компенсаторную), викарную (заместительную) и гормональную (коррелятивную) гипертрофии.

Самым частым видом гипертрофии является рабочая гипертрофия, которая встречается как в нормальных физиологических условиях, так и при некоторых патологических состояниях. Причиной ее является усиленная нагрузка, предъявляемая к органу или ткани. Примером рабочей гипертрофии в физиологических условиях может служить гипертрофия скелетной мускулатуры.

Заместительная гипертрофия развивается в парных органах (почки) или при удалении части органа, например, в печени, в легких. Примером физиологической гормональной гипертрофии может служить гипертрофия матки при беременности.

Развивающаяся в органе гипертрофия имеет положительное значение, поскольку позволяет сохранить функцию органа в резко изменившихся условиях.

Исходя из частей органа (клеток), вовлечённых в процесс гипертрофии, её подразделяют на истинную и ложную. Истинная гипертрофия -увеличение объема ткани или органа и повышение их функциональной способности вследствие разрастания основных клеток, а также других элементов. Примером являются гипертрофия гладких мышц матки у беременных животных, а также гипертрофия сердца при физической работе. Ложная гипертрофия - увеличение объема органа при разрастании соединительной или жировой ткани. Количество основных клеток при этом остается без изменений или даже уменьшается, а функциональная способность органа снижается (например, гипертрофия молочной железы за счет жировой ткани).

У животных различают два основных способа регенерации: эпиморфоз и морфаллаксис.

Эпиморфоз заключается в отрастании нового органа от ампутационной поверхности. При эпиморфической регенерации утраченная часть тела восстанавливается за счет активности недифференцированных клеток, похожих на эмбриональные. Они накапливаются под пораненным эпидермисом у поверхности разреза, где образуют зачаток, или бластему.

Существует две теории происхождения бластемных клеток: 1) клетки бластемы происходят из «резервных клеток», т.е. клеток, оставшихся неиспользованными в процессе эмбрионального развития и распределившихся по разным органам тела; 2) ткани, целостность которых была нарушена в области разреза (травмы), «дедифференцируются» (утрачивают специализацию) и превращаются в отдельные бластемные клетки.

Морфаллаксис - это регенерация путем перестройки регенерирующего участка. При морфаллаксисе другие ткани тела или органа преобразуются в структуры недостающей части.(У гидроидных полипов)

Соматический эмбриогенез, т. е. развитие нового организма из отдельных соматических клеток или комплексов их, близко соприкасается с вегетативным размножением. Оба они подчиняются одной закономерности: чем проще организация тех или иных организмов, тем чаще у них встречается бесполое размножение и тем легче у них получить экспериментально соматический эмбриогенез. При вспашке поля корни осота и других сорняков ока­зываются разорванными, но каждый отрезок корня способен дать целое растение. Ветка ивы, посаженная во влажную почву, вырастает в новое дерево. Пресноводная губка бадяга и некоторые виды морских губок способны после протирания через сито образовывать новые целые особи из отдельных комочков клеток. У гидры вос­станавливается целый организм из 1/200 ее части. У морской звезды восстанавливаются не только отломанные лучи, но и целый организм из одного луча.

Соматический эмбриогенез характерен только для организмов, обладающих способностью к бесполому размножению.

АВТОТОМИЯ, аутотомия - самопроизвольное отбрасывание конечностей, хвоста или др. частей тела, наблюдаемое у мн. животных при резком их раздражении, напряж, при схватывании хищником. Автотомия. свойственна многим беспозвоночным: нек-рые гидроидные полипы и актинии могут отбрасывать щупальца, кольчатые черви - конец тела, моллюски - сифоны, ракообразные - клешни и целые конечности. Из позвоночных Автотомия. наблюдается лишь у некоторых ящериц, которые могут отбрасывать хвост. Автотомия- защитная реакция, в основе которой лежит рефлекторный процесс. У ящериц Автотомия управляется нервным центром, расположенным в спинном мозге.

Дата: 2018-09-13, просмотров: 181.