ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ
Лекция 7. Общие сведения о трехфазных линейных электрических цепях
В современных энергетических системах генерирование и передача больших потоков энергии осуществляется трехфазными цепями (системами). Широкое их распространение объясняется, главным образом, тремя основными причинами:
а) передача энергии на дальние расстояния трехфазным током экономически более выгодна, чем переменным током с иным числом фаз;
б) элементы трехфазной системы - трехфазный асинхронный двигатель и трехфазный трансформатор - весьма просты в производстве, экономичны и надежны в работе;
в) трехфазная система обладает свойством неизменности величины мгновенной мощности за период синусоидального тока в том случае, если нагрузка во всех трех фазах трехфазного генератора одинакова.
Трехфазная система была изобретена и разработана во всех деталях, включая трехфазные трансформатор и асинхронный двигатель, выдающимися русским инженером М.О. Доливо-Добровольским в 1891 году.
Соотношение между линейными и фазовыми напряжениями и токами
При соединении генератора в "звезду" (рис. 7.5, 7.6, 7.7) линейное напряжение по модулю в раз больше фазового напряжения генератора (Uф генератора). Это следует из того, что UЛ есть основание равнобедренного треугольника с острыми углами по 300 (рис. 7.10):
(7.1)
Рис. 7.10
Линейный ток IЛ при соединении генератора в "звезду" равен фазовому току генератора:
(7.2)
При соединении генератора в "треугольник" линейное напряжение равно фазовому напряжению генератора (рис. 7.8; 7.9):
(7.3)
При соединении нагрузки в "звезду" (рис. 7.5; 7.6;.7.9) соответствующий линейный ток равен соответствующему фазовому току нагрузки:
При соединении нагрузки "треугольником" токи в сторонах треугольника также снабжают двумя индексами. Положительные направления токов выбирают по часовой стрелке. Индексы у токов соответствуют выбранным для них положительных направлениям. Первый индекс соответствует узлу, из которого ток вытекает, второй - узлу, в который ток втекает.
При соединении нагрузки в "треугольник" (рис. 7.7; 7.8) линейные токи не равны фазовым токам нагрузки и определяются через них по первому закону Кирхгофа:
(7.4)
В случае симметричной нагрузки сумма фазных токов в нагрузке равна нулю. Линейный ток определяется как основание равнобедренного треугольника (рис.7.11):
(7.5)
Рис. 7.11
Мощность трехфазной цепи
Под активной мощностью трехфазной системы понимают сумму активных мощностей фаз и активной мощности, выделяемой в сопротивлении, включенном в нулевой провод:
(7.6)
Реактивная мощность - сумма реактивных мощностей фаз и реактивной мощности сопротивления, включенного в нулевой провод:
(7.7)
Полная мощность:
(7.8)
Если нагрузка симметричная, то
(7.9)
. (7.10)
Здесь под j понимается угол между напряжением UФ и током IФ фазы нагрузки.
При симметричной нагрузке фаз
(7.11)
При симметричной нагрузке независимо от способа ее соединения в "звезду" или в "треугольник"
Поэтому вместо формул (7.11) используют следующие:
(7.12)
ТЕМА III
Магнитные цепи
Практическим результатом теории магнитного поля является математический аппарат и методы расчета электромагнитных устройств. Любое электромагнитное устройство состоит из намагничивающих элементов (катушек, постоянных магнитов) и магнитопровода. Расчет заключается в определении материалов и геометрических размеров магнитопровода, тока катушки, числа ее витков и ее размеров. Намагничивающая катушка создает магнитное поле в магнитопроводе и в окружающем пространстве. Так как ферромагнитных материалов много больше , то основная часть линий магнитного поля проходит по магнитопроводу.
Совокупность ферромагнитных тел и сред, по которым замыкается магнитный поток, называется магнитной цепью.
При анализе магнитных цепей допускаются следующие упрощения:
1.Магнитное поле изображается распределением магнитных силовых линий в магнитопроводе. Если поле равномерно распределено по сечению магнитопровода, то его изображают параллельными линиями.
2.Магнитная индукция и напряженность считаются равномерно распределенными по объему магнитопровода.
3.Магнитный поток считается сосредоточенным только в магнитопроводе.
Магнитные цепи делятся на однородные и неоднородные, разветвленные и неразветвленные. Однородная магнитная цепь приведена на рис.8.1. Это замкнутый магнитопровод с равномерной обмоткой. Каждый виток обмотки создает линии магнитной индукции, которые замыкаются по магнитопроводу. Совокупность витков создает общий магнитный поток.
На практике широко применяются неоднородные магнитные цепи. В таких цепях обмотка сосредоточена в одном месте, а магнитопровод имеет участки с различной магнитной проницаемостью (рис. 8.5).
С учетом перечисленных упрощений считается, что весь магнитный поток Ф проходит по магнитопроводу. Он постоянный как в ферромагнитном материале, так и в воздушном зазоре. Площадь воздушного зазора равна площади сечения ферромагнитного материала. Поэтому и магнитная индукция В = Ф/S также постоянна. Однако напряженность магнитного поля Н в ферромагнитном материале и воздушном зазоре различна. Поэтому такая цепь называется неоднородной.
Примерами разветвленных магнитных цепей могут служить цепи электрических машин, трансформаторов, поляризованных реле.
Электромагнитные реле.
В состав автоматизированных, полуавтоматизированных и ручных систем уаправления электроэнергетическими установками, электроприводами, технологическими установками и т.п. входят электромагнитные устройства (контакторы, пускатели, реле, электромагниты). С помощью этих устройств производится регулирование токов и напряжений генераторов. Они выполняют функции контроля и защиты установок, потребляющих электроэнергию. Основными частями электромагнитных устройств являются электромагнитные механизмы: электрические контакты, механический или электромагнитный привод контактной группы, кнопки управления.
По назначению различают следующие электромагнитные устройства:
-коммутационные (разъединители, выключатели, переключатели);
-защитные (предохранители, реле защиты);
-пускорегулирующие (контакторы, пускатели, реле управления);
-контролирующие и регулирующие (датчики, реле);
-электромагниты.
Рассмотрим принцип работы электромагнитного механизма. В электромагнитном механизме осуществляется преобразование электрической энергии источника питания в механическую энергию перемещения якоря. Схема механизма приведена на рис. 9.4. Она включает неподвижную 1 (ярмо) и подвижную 2 (якорь) части магнитопровода; намагничивающую катушку 3, удерживающую 4.
Появление тока в намагничивающей катушке приводит к намагничиванию ферромагнитных частей магнитопровода. Образовавшееся магнитное поле притягивает якорь к ярму.
Проведем анализ процесса преобразования энергии. Пусть к намагничивающей катушке приложено напряжение U, и через нее протекает ток I. На сопротивлении катушки R создается падение напряжения .
Разность U -UR урановешивает э.д.с. еL, т.е.
(9.7)
Тогда
(9.8)
Умножим (9.8) на и проинтегрируем за время намагничивания. Тогда
или
,
где WП - энергия, затрачиваемая источником на нагрев катушки за время t/
Решением выражения для WM имеет вид:
(9.9)
Учитывая, что
,
а
,
где S - площадь, а l - воздушного зазора, получим
.
При перемещении якоря совершается работа
где - энергия магнитного поля в начале намагничивания с длиной воздушного зазора ;
- энергия магнитного поля с длиной воздушного зазора ;
.
С учетом (9.10) можем записать
Так как , то
,
где
(9.11)
Выражение (9.11) определяет силу [кГ], с которой магнитное поле действует на якорь. Очевидно, что значение силы зависит от длины зазора и магнитодвижущей силы .
Если к катушке подключен источник синусоидального напряжения, то и магнитный поток в магнитопроводе и воздушном зазоре изменяется по синусоидальному закону:
.
В этом случае мгновенное значение силы, притягивающий якорь к ярму определяется выражением
,
где
После преобразования получим
. (9.12)
Видно, что тяговая сила содержит переменную и постоянную составляющую. Переменная составляющая имеет частоту, вдвое большую частоты питающего напряжения, и амплитуду, равную постоянной составляющей . Пульсация F(t) вызывает вибрацию якоря (дребезг).
В однофазных электромагнитных механизмах для устранения пульсации на якоре размещают короткозамкнутый (КЗ) виток провода. Переменный магнитный поток Ф(t) наводит в КЗ витке э.д.с. сдвинутую по фазе на 900 относительно ФМ. По витку протекает ток iK, который создает поток ФКМ, совпадающий по фазе с э.д.с.
Теперь на якорь начинает действовать пульсирующая сила с удвоенной частотой, т.е. cos 4wt. В итоге постоянная составляющая силы возрастает, пульсация уменьшается.
Электромагнитное реле - это устройство, в котором при достижении определенного значения входной величины выходная величина изменяется скачком. Выходные контакты реле замыкаются или размыкаются. Реле применяют в цепях управления с током не более 1А. Входной или управляющей величиной реле могут быть электрические, механические, тепловые и др. воздействия.
На рис. 9.5. показано устройство простейшего электромагнитного реле клапанного типа. При определенной магнитодвижущей силе (МДС) в цепи управления возникающая сила F притяжения якоря З к ярму 1 превышает силу противодействующей пружины 2. Воздушный зазор уменьшается. Клапан 4 нажимает на подвижный контакт 5 и прижимает его с силой F к неподвижному контакту 6. Управляемая цепь замыкается. Исполнительный элемент 7 производит требуемое действие.
Контакты реле в исходном положении могут быть как разомкнуты, так и замкнуты. В последнем случае при срабатывании реле они размыкаются. Действие каких-либо устройств прекращается. Многие реле имеют несколько контактных пар. Тогда их используют для управления несколькими электрическими цепями.
Функции реле связаны с контролем режима работы важных элементов электрической цепи: генераторов, трансформаторов, линий передач, электродвигателей и т.п.
При нарушении нормального режима соответствующее реле приводит в действие аппаратуру, которая либо восстанавливает нормальный режим работы, либо отключает поврежденный участок. Такие реле называют "реле защиты". Они "наблюдают" за током в цепи (токовая защита), за напряжением на отдельных участках (защита по напряжению), за изменением мощности, частоты тока и т.д.
В зависимости от значения или направления входной величины различают реле максимального, минимального или направленного действия.
В зависимости от времени срабатывания различают реле быстродействующие ), нормальные ) и с выдержкой времени ( реле времени).
Реле, не реагирующее на направление управляющей величины (например, тока), называют нейтральным. Реле, чувствительные к полярности управляющей величины, называют поляризованными.
Если исполнительный элемент реле (подвижные контакты) непосредственно воздействует на цепь управления, то это реле прямого действия. Когда воздействие осуществляется через другие аппараты - реле косвенного действия.
Рис. 9.5
Лекция 10. Трансформаторы
ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ
Дата: 2018-11-18, просмотров: 462.