Для решения дифференциального уравнения (2.6) необходимо определить граничные условия для волновой функции ξ(z). Для этого необходимо сшить на границе значения функции в виде стоячей волны в потенциальной яме и в виде затухающей экспоненты в барьере, а также ее производной. Используя аналогию потенциальной ямы в ОПЗ с прямоугольной потенциальной ямой и приводя соответствующие выкладки, имеем для величины начальной фазы ∆ I стоячей волны в ОПЗ:
. (2.10)
Значение типа sin (∆i) будет соответствовать значению волновой функции на границе, в то время как максимальное значение волновой функции sin (ξ(z)) будет порядка единицы. В реальных условиях величина потенциального барьера U0 на границе полупроводник-диэлектрик, например Si-SiO2, порядка U0 ~ 3 эВ, в то время как величины Е i составляют сотые доли электронвольта Е i < 0,05 эВ. Таким образом, как следует из приведенных оценок, значение волновой функции ξ(z) на границе полупроводника составляет десятые или сотые доли максимального значения волновой функции, достигаемого на некотором расстоянии z. Этот факт позволяет полагать величину волновой функции равной нулю, ξ(z) = 0, при z = 0. Отметим, что этот момент является исключительно важным, поскольку соответствует нулевой вероятности нахождения электрона на границе ОПЗ. Следовательно, квантовое рассмотрение уже в силу постановки граничных условий на волновую функцию требует нулевой плотности n(z) на поверхности полупроводника, в то время как классическое рассмотрение дает здесь максимальное значение. Аналогично, при величина .
Таким образом, для решения (2.6) требуются граничные условия:
(2.11)
и необходимо выполнение условия нормировки:
(2.10)
Предположим, что мы решили уравнение (2.6) и знаем величины энергии и соответствующие волновые функции ξi(z). Тогда полное число электронов Ni в i-той квантовой подзоне на единицу площади будет:
(2.13)
При наличии нескольких минимумов энергии Е( k ) в двумерной подзоне Бриллюэна на поверхности значения Ei и ξi(z) будут еще иметь метку, соответствующую выбранному минимуму J .
Распределение электронов по толщине канала будет в этом случае определяться степенью заполнения подзон поперечного квантования и видом функции в каждой подзоне:
(2.14)
Полное число носителей в канале Гп на единицу площади будет:
(2.15)
Таким образом, основная задача при квантовомеханическом рассмотрении электрона в потенциальной яме состоит в решении уравнения (2.6) и нахождении спектра энергий и вида волновых функций . Оказывается, что в аналитическом виде выражение и можно получить только в случае треугольной потенциальной ямы, которая реализуется в области слабой инверсии и в квантовом пределе, когда заполнена только одна квантовая подзона.
Дата: 2019-12-22, просмотров: 231.