Бийский технологический институт (филиал)
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Бийский технологический институт (филиал)

 

С.Л. Раско, А.Г. Овчаренко

 

 

ЭКСПЛУАТАЦИОННАЯ БЕЗОПАСНОСТЬ
КОНДЕНСИРОВАННЫХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ


Учебное пособие

 

Рекомендовано Сибирским региональным учебно-методическим
центром высшего профессионального образования
для межвузовского использования в качестве учебного пособия
для студентов, обучающихся по направлениям «Химические технологии энергонасыщенных материалов и изделий» и «Горное дело»
при изучении раздела дисциплины «Безопасность жизнедеятельности»

 

 

Барнаул 2006

УДК 662.2:658.382

ББК 35.63

Р-24

 

Раско, С. Л. Эксплуатационная безопасность конденсированных взрывчатых веществ: учебное пособие / С.Л. Раско, А.Г. Овчаренко.

 

Алт. гос. тех. ун-т, БТИ. - Бийск.

Изд-во Алт. гос. тех. ун-та, 2006. - 147 с.

 

В пособии изложены материалы по основам эксплуатационной безопасности при использовании конденсированных взрывчатых веществ. Обобщены научные и практические достижения в этой области на основе известных работ, приведены конкретные примеры. Даны основные положения теории и физические основы термодинамики взрывчатых веществ, критерии безопасности и некоторые методы их определения, а также основные меры по обеспечению безопасности при использовании взрывчатых веществ.  

Учебное пособие содержит дополнительные сведения, необходимые для изучения раздела «Взрывная безопасность» курса «Безопасность жизнедеятельности». Рекомендуется студентам вузов, обучающимся по направлениям «Химические технологии энергонасыщенных материалов и изделий» и «Горное дело». Будет полезным для специалистов предприятий и организаций, занимающихся эксплуатацией взрывчатых веществ.

 

 

Рецензенты: д.т.н., профессор зав. каф. «Безопасность
                         жизнедеятельности» АлтГТУ им. И. И. Ползунова
                         Мироненко В. Ф.

                д.т.н. нач. отдела промышленных ВВ
                         ФГУП ФНПЦ «Алтай» Петров Е. А.

 

ISBN 5-9257-0082-1

 

ã Раско С.Л., Овчаренко А.Г., 2006

ã БТИ АлтГТУ, 2006

 

Содержание

 

 

ВВЕДЕНИЕ______________________________________________ 4
1 ВЗРЫВЧАТЫЕ ВЕЩЕСТВА - ИСТОЧНИКИ ЭНЕРГИИ______ 6
1.1 Анализ опасности взрывчатых веществ__________________ 6
1.2 Область применения взрывчатых веществ________________ 9
2 ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ВЗРЫВЧАТЫХ ВЕЩЕСТВ_______________________________________________   11
2.1 Основные типы взрывчатых веществ и их классификация___ 11
2.2 Средства воспламенения и инициирования________________ 15
2.3 Смесевые взрывчатые вещества_________________________ 16
2.4 Физико-химические основы взрывных превращений_______ 21
2.5 Горение взрывчатых веществ___________________________ 25
2.6 Возбуждение взрывных превращений и начальный импульс_________________________________________________   26
3 физические основы термодинамики ВЗРЫВЧАТЫХ ВЕЩЕСТВ_________________________________ 30
3.1 Энергетические характеристики________________________ 30
3.2 Стойкость взрывчатых веществ_________________________ 33
3.3 Разрушающие факторы взрывчатых веществ______________ 38
4 критерии безопасности ВЗРЫВЧАТЫХ ВЕЩЕСТВ____ 65
4.1 Чувствительность к тепловому импульсу_________________ 66
4.2 Чувствительность к механическим воздействиям__________ 70
4.3 Критерии оценки взрывоопасности при вибрации__________ 81
4.4 Чувствительность ВВ к разрядам статического электричества_____________________________________________   88
4.5 Чувствительность ВВ к совместному воздействию_________ 96
5 обеспечение безопасности при эксплуатации взрывчатых веществ_________________________________   99
5.1 Оценка разрушающей способности взрывов и безопасности человека от ударной волны_________________________________   100
5.2 Токсичность взрывчатых веществ и продуктов взрыва______ 108
5.3 Оценка безопасности при механических воздействиях______ 116
5.4 Оценка электростатической безопасности при эксплуатации ВВ ______________________________________   123
5.5 Безопасность взрывных работ при наличии блуждающих токов____________________________________________________   138
Литература___________________________________________ 143

 

 

Введение

 

Взрывчатые вещества (ВВ) как высококонцентрированный и экономичный источник энергии кроме оборонной отрасли широко применяют в различных отраслях народного хозяйства. Около 90 % всего объёма руд цветных и черных металлов в нашей стране добывают взрывным способом. Более 80 % всех промышленных ВВ используется в горнорудной промышленности. Массовые взрывы широко используются в строительстве, при сооружении плотин и насыпей, прокладке магистралей, водных каналов, нефтегазопроводов. Продолжается поиск и исследование дальнейших путей использования и управления энергией взрыва. В настоящее время применяется взрывной способ производства некоторых особенно ценных минералов и искусственных материалов, ускоряются отдельные химические процессы с использованием сверхвысоких давлений взрыва, проводятся работы по искусственному дождеванию, внедряются методы взрывного бурения.

Наряду с интенсификацией производственных процессов с использованием высокоэффективных ВВ и разработкой современных ВВ с более чувствительными компонентами выдвигаются повышенные требования безопасности работ на всех этапах соприкосновения человека с взрывчатыми материалами. Проблема безопасности была и остается актуальной на стадиях проектирования, подготовки, испытания, изготовления и применения ВВ.

Безопасность различных видов взрывных работ в значительной степени зависит от теоретических знаний и накопленного опыта при создании безопасных технологий. При контактировании человека с взрывчатыми материалами большую роль играет психологический фактор, когда понимание механизма процессов взрывного превращения позволяет более уверенно и качественно выполнять требования инструкций, правил и других нормативных документов.

К сожалению, как показывает практика, аварии и взрывы с человеческими жертвами часто происходят по причине несовершенства отдельных технических средств, ошибочных действий производственного персонала и руководителей предприятий, а также нарушений требований технологической документации  вследствие безответственного отношения к работе и недостатка знаний в области безопасности технологических процессов.

Следовательно, необходимо постоянно обновлять знания в области безопасности технологических процессов всем работникам предприятий, проектных организаций и органов надзора.

В предлагаемом читателю пособии изложены материалы по основам эксплуатационной безопасности при использовании конденсированных ВВ. Под конденсированными взрывчатыми веществами понимаются порошкообразные, твердомонолитные, гранулированные, чешуированные, пластичные, эластичные, пастообразные, желеобразные и жидкие взрывчатые вещества. Обобщены научные и практические достижения в этой области на основе исследований различных ученых,  приведены конкретные примеры.

В первом разделе дан краткий анализ опасности ВВ, которые при определенных обстоятельствах приводят к аварийной ситуации или катастрофам.

Во втором и третьем разделах изложены основные положения теории и термодинамики ВВ. Материал представлен в объёме, необходимом для понимания процессов возникновения и развития взрывных превращений. При этом использованы труды зарубежных и российских ученых.

В четвертом разделе описаны основные критерии безопасности ВВ, характеризующие минимальные воздействия на вещество, при которых начинаются взрывные превращения. Описаны методы и установки для их определения, приводятся экспериментальные результаты.

В пятом разделе дана оценка обеспечения безопасности при эксплуатации и испытании промышленных ВВ. Описаны критерии разрушающей способности взрыва и токсичности продуктов после взрыва. Приведена оценка электростатической безопасности и безопасности взрывных работ при наличии блуждающих токов.

В учебном пособии отражается круг вопросов по эксплуатационной безопасности ВВ, который является дополнительным материалом при изучении раздела «Взрывная безопасность» курса «Безопасность жизнедеятельности», рекомендуется студентам вузов, обучающимся по направлениям «Химические технологии энергонасыщенных материалов и изделий» и «Горное дело», а также будет полезным для специалистов предприятий и организаций, занимающихся эксплуатацией взрывчатых веществ.

Авторы не претендуют на всю полноту рассматриваемого вопроса, поэтому с благодарностью примут все пожелания и замечания по данному учебному пособию.

 

1 Взрывчатые вещества – источники энергии

 

1.1 Анализ опасности взрывчатых веществ

 

В нашей стране многие годы было принято, что тема трагических событий и катастроф в сфере материального производства всегда оставалась закрытой для широкой общественности. Информация о крупномасштабных взрывах и пожарах, валовых выбросах токсичных продуктов была весьма приблизительной, а о гибели людей и других тяжелых последствиях знали лишь должностные лица, не заинтересованные, как правило, в широкой огласке. Является неполной и информация о катастрофах прошлого века за рубежом в Фликсборо, Сан-Хуан-Иксуатепеке, в Бхопале и многих других местах, где погибли тысячи работающих и часть населения, проживающего вблизи промышленных объектов.

Потребовались трагические события на Чернобыльской АЭС, магистральном трубопроводе сжиженного нефтяного газа под Уфой, в хранилище жидкого аммиака в Ионаве (Литва), на нефтеперера-батывающей установке Ярославля, чтобы общество начало осознавать необходимость переоценки уровня существующей технической безо-пасности применяемых технологий, оборудования, систем управления и защиты от промышленных аварий и катастроф.

Наибольшую опасность при авариях представляют взрывчатые вещества. Для убедительности можно привести ряд исторических примеров значительного воздействия взрывчатых веществ, происшедших вследствие сознательных действий человека или аварийных ситуаций [1]. Один из самых колоссальных взрывов произошел 10 октября 1885 г. у входа в Нью-Йоркскую гавань. Под действием трех раздельных ударов, напоминающих толчки при землетрясении, в обширной зоне вокруг места взрыва произошло сотрясение почвы; на площади 400´250 м на высоту 60 м поднялся столб морской воды, выбрасывавший в воздух пену, ярко окрашенную газообразными продуктами взрыва. Этот гигантский гейзер возник в результате взрыва огромной подводной скалы, так называемый Флуд Рок (рифа Hell Gate - Адских ворот); большая часть этой скалы располагалась ниже уровня воды. Эта скала представляла собой гнейсовую массу, пронизанную кварцевыми жилами. Силою неслыханно большого заряда взрывчатого вещества она была снесена, и таким образом было устранено препятствие, затруднявшее судоходство.

Сначала в скале были проложены две шахты глубиною 20 м, которые выходили на поверхность воды, а затем вся скалистая масса была пройдена сетью штолен общей длиной 6600 м и шириною 3,5 м, при этом было вынуто около 60000 м3 породы (рисунок 1.1). Самая большая галерея была длиною 360 м; толщина сводов, подлежавших взрыву, колебалась от 3 до 6 м. Как в сводах, так и в стенках штолен было заложено в общей сложности 13280 буровых скважин глубиною 2,7 м и диаметром 12 см, заряженных патронами рекарока, герметично запаянными в медные гильзы, в которые предварительно вкладывался патрон динамита с электрозапалом, соединенным с общей сетью воспламенения. Количество израсходованных взрывчатых веществ составило 109000 кг рекарока и 19050 кг гурдинамита. Воспламенение было произведено после частичного затопления штолен водою. Хотя все заряды взорвались одновременно, получились три отдельных сотрясения соответственно трем различным средам (вода, воздух и земля), в которых удар взрыва распространяется с разной скоростью. Взорванная площадь скалы составляла 180000 м2, а расходы исчислялись цифрою
5¼ млн. франков.

 

 
Рисунок 1.1 - Подготовка к взрыванию рифа Флуд-Рок в Нью-Йоркской гавани

Более красноречивым доказательством передачи взрыва на расстояние была ужасная катастрофа в гавани Галифакс. Утром 7 декабря 1917 года около 9 часов французский транспорт «Монблан» с грузом боевых припасов столкнулся при входе в бухту с направляющимся навстречу ему бельгийским продовольственным транспортом «Има». «Монблан», имевший водоизмещение 3121 тонн и шедший с полным грузом, получил удар в носовую часть; запасы бензина, расположенные в переднем трюме, разлились по судну и воспламенились. В то время как команда всеми средствами пыталась побороть огонь, транспорт приблизился к набережной. Между тем горящий бензин попал в топки. Команда потеряла надежду справиться с бедствием и, будучи уверена в том, что всякая дальнейшая борьба бесполезна, оставила горящее судно. Через 17 минут после столкновения последовал взрыв, напоминающий извержение вулкана; часть города Ричмонд (штат  Виржиния на юго-востоке США), расположенная амфитеатром на берегу моря, была сровнена с землей; взрывом было на месте убито 5000 и ранено 10000 человек. Убытки исчислялись сотнями млн. франков.

Действие взрыва на расстоянии было исключительное. В 7 км от бухты телеграфист был убит ударом о стену. В 10 км севернее города была разрушена колония индейцев, и многие из них были погребены под развалинами. Даже на расстоянии 100 км были выбиты оконные стекла.

21 сентября 1921 г. в Оппау подрывы, производившиеся в складе искусственного удобрения (смесь нитрата и сульфата аммония), вызвали величайший взрыв, подобный извержению вулкана. На том месте, где хранилось 4500 тонн соли, зиял кратер длиною 165 м, шириною
96 м и глубиною 18,5 м. При этом было убито 509 человек и 1917 жителей окружающей местности пострадали.

Возникшие взрывные волны достигли самых высоких слоев воздуха, и оттуда, как бы с неба, распространились на далекие расстояния.      В 360 км от места взрыва, в горной долине Энгодина, исполинский взрыв был воспринят как звуковая волна.

6 июня 1989 г. газета «Правда» сообщила о трагедии вблизи железнодорожной станции г. Арзамаса. Утром 4 июня взлетели на воздух три крытых вагона с промышленными ВВ, предназначенными для геологов, горняков, строителей. Общая масса ВВ составляла 120 тонн.
В результате взрыва были разрушены большой жилой массив, станционные постройки; погибло большое число людей. Очевидцы наблюдали, что вначале возник высокий столб пламени, затем прошел гул, и в небо начал подниматься серый «гриб». Из первых сообщений стало известно, что погибли 68 человек, полностью разрушено 150 жилых домов. О силе взрыва можно судить также из сообщений очевидцев, наблюдавших, как за километр от места взрыва летели куски рельсов, в кирпичном здании на расстоянии 0,5 км от железной дороги наблюдались пробоины в полуразрушенных стенах. На железнодорожном пути на месте взрыва образовалась воронка «вполовину футбольного поля» и глубиной около 30 м. За взрывом последовал пожар от воспламенения природного газа, выходящего из разрушенного магистрального подземного трубопровода, который пересекал железнодорожный путь. В сообщениях газет упоминалось о материальном ущербе, исчисляемом в 400 млн. руб.

Данные примеры показывают колоссальную мощность источников энергии ВВ, которые могут кроме полезного действия принести сокрушительные разрушения с негативными последствиями.

В химической индустрии мира в среднем каждые 2 месяца происходит одна катастрофа. За период с начала 1984 г. до конца первого полугодия 1985 г. зарегистрировано 90 крупных аварий, при которых погибло около 5 тысяч человек. Более половины промышленных катастроф в период 1900-1990 гг. приходится на 1970-1990 гг., причем треть из них – на 80-е годы; одновременно возрос их разрушительный эффект.

На химико-технологических объектах нашей страны за 1980-2000 гг. произошло примерно 180 крупных промышленных взрывов с тяжелыми последствиями. Отмечается неуклонное увеличение их числа за последние годы [2]. При этом локальные взрывы и пожары, ежегодное число которых исчисляется тысячами, при неблагоприятном стечении обстоятельств могут вызвать цепное развитие аварий до катастрофических масштабов.

 

1.2 Область применения взрывчатых веществ

 

На протяжении многих веков ВВ состоят на службе у человека.
И сегодня существуют области человеческой деятельности, где без взрывчатых веществ обойтись невозможно. Это использование их в военном деле и в промышленных целях.

Взрывчатыми веществами снаряжаются боеприпасы различных типов: ракеты, снаряды, мины, торпеды, авиационные бомбы и др. ВВ являются основным средством, обеспечивающим поражение живой силы, боевой техники и разрушение объектов различного назначения.

Для доставки боеприпасов до цели широко используются метательные ВВ – пороха. Пороховой заряд сообщает боеприпасу скорость, необходимую для его переброски на дальние расстояния или поражения быстродвижущихся целей.

Появление новых видов современного оружия не только не снизило значения ВВ и порохов, а, наоборот, расширило область их применения. Они используются в противотанковых и зенитных управляемых ракетах, ракетах оперативно-тактического назначения, авиационных и глубинных бомбах. Для осуществления взлета современных истребителей применяются пороховые стартовые ускорители.

Даже в ядерном и термоядерном оружии не обходятся без взрывчатых веществ. Чтобы произошел ядерный взрыв, необходимо быстрое соединение нескольких частей ядерного заряда (делящегося вещества), масса которых в отдельности меньше, а в сумме больше критической. Быстрое соединение субкритических масс ядерного заряда достигается взрывом обычного ВВ.

ВВ находят применение и в народном хозяйстве [3]. С помощью ВВ выполняются разнообразные работы. Энергия взрыва принята на вооружение человека как одно из многих средств ускорения и значительного снижения трудоемкости горных и земляных работ. С помощью взрыва почти мгновенно можно получить необходимую глубину для прокладки дороги в горах или котлован для устройства сооружения. ВВ с успехом используются при строительстве плотин, каналов, для углубления и расширения рек и водоемов. При добыче полезных ископаемых взрыв очень часто является единственным средством.          

Подземный взрыв может быть источником звуковых или сейсмических волн. Направление движения и скорость этих волн зависят от свойств горных пород. Произведя небольшой подземный взрыв и регистрируя на некотором расстоянии от места взрыва с помощью измерительных приборов время прибытия сейсмических волн, можно получить данные о расположении невидимых отражающих поверхностей, рассчитать их глубину, угол наклона и изучить структуру пород. Взрывом осуществляют резку и сварку металлов. Взрыв является средством научного исследования. При взрыве имеют место очень высокие температуры, скорости и давления. Это позволяет изучить явления, возникающие при сильном воздействии на вещество, и способствует раскрытию новых свойств материи.

Приведенными примерами не исчерпывается все многообразие случаев практического использования ВВ. Способы и область применения ВВ постоянно совершенствуются одновременно с разработкой новых ВВ, обладающих более эффективными взрывчатыми свойст-вами.

 

2 ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ВЗРЫВЧАТЫХ
ВЕЩЕСТВ

 

2.1 Основные типы взрывчатых веществ и их классификация

 

Взрывчатые вещества весьма разнообразны по своему химическому составу, физическим свойствам и агрегатному состоянию. Известно много ВВ, представляющих собой твердые, жидкие и газообразные вещества. В принципе взрывчатым веществом может быть любая смесь горючего с окислителем. Самое древнее ВВ – дымный порох, который представляет собой смесь двух горючих (уголь и сера) с окислителем (калиевая селитра). Другой вид подобных смесей – оксиликвиты – представляют собой смесь тонкодисперсного горючего (мох, опилки и т.д.) с жидким кислородом.

Необходимым условием получения ВВ из горючего и окислителя является их тщательное перемешивание. Однако как бы тщательно не были перемешаны составные части смеси, невозможно добиться такой равномерности состава, при которой с каждой молекулой горючего соседствовала бы молекула окислителя. Поэтому в механических смесях скорость химической реакции при взрывном превращении никогда не достигает максимального значения. Такого недостатка не имеют взрывчатые химические соединения, в молекулу которых входят атомы горючего (углерода, водорода) и атомы окислителя (кислорода).

К взрывчатым химическим соединениям, молекулы которых содержат атомы горючих элементов и кислорода, относятся сложные азотнокислые эфиры многоатомных спиртов, так называемые нитроэфиры, и нитросоединения ароматических углеводородов.

Взрывчатые вещества по своим свойствам делятся на инициирующие, бризантные и метательные. В некоторых случаях говорят соответственно о первичных, вторичных ВВ и порохах.

Характерной особенностью инициирующих ВВ (ИВВ) является их способность детонировать под влиянием простого внешнего импульса (луча огня, удара, трения и т.д.), тогда как для детонации бризантных ВВ (БВВ) требуется предварительный взрыв инициирующего ВВ. Деление ВВ на инициирующие и бризантные до некоторой степени условно. Так, для ряда ИВВ можно создать такие условия, при которых горение не переходит в детонацию, т.е. ИВВ ведут себя как бризантные ВВ. И наоборот, некоторые бризантные ВВ в особых условиях воспламенения через сравнительно короткое время детонируют, т.е. ведут себя как инициирующие ВВ. Как в первом, так и во втором случаях требуются особые условия.

Способность ИВВ детонировать от простого импульса требует чрезвычайно осторожного обращения с ними и, что особенно важно, при работе с ними не пользоваться большими количествами единовременно.

Пороха, благодаря особенностям своей структуры, а именно
однородности и монолитности пороховых элементов, обеспечивают устойчивое и равномерное горение. Даже при давлениях от 4000 до 5000 атмосфер пороха устойчиво горят не детонируя. Однако при достаточном начальном импульсе можно вызвать также и детонацию порохов. Таким образом, хотя три группы ВВ и выполняют различные функции, однако органического различия между ними нет.

Ниже приведены общие характеристики некоторых представителей ИВВ, БВВ и порохов, наиболее широко используемых в военных и промышленных целях.

 

Инициирующие взрывчатые вещества

Гремучая ртуть Hg(OCN)2 - кристаллическое вещество белого или серого цвета с плотностью 4,307 г/см3. Заряд гремучей ртути в прессованном виде (давление прессования 300 кг/см2) имеет плотность, равную 3,3 г/см3. При действии луча огня гремучая ртуть воспламеняется, но горение быстро переходит в детонацию. При увеличении давления прессования условия перехода горения гремучей ртути в детонацию ухудшаются. Запрессованная под давлением более 800 кг/см2 в корпусе гильзы капсуля-детонатора №8 гремучая ртуть сгорает без детонации (явление перепрессовки гремучей ртути). Увлажнение её резко снижает чувствительность к внешним воздействиям. В присутствии влаги гремучая ртуть взаимодействует с металлическим алюминием, поэтому ее не прессуют в алюминиевую оболочку.

Гремучая ртуть достаточно чувствительна к лучу огня. Применяется для снаряжения капсулей-детонаторов и в ударных составах для снаряжения капсулей-воспламенителей.

Азид свинца Pb(N3)2 - кристаллическое вещество белого цвета с плотностью 4,71 г/см3. Плотность прессованного заряда азида свинца 3,9 г/см3.

Азид свинца под влиянием внешнего воздействия детонирует без предварительного горения. Благодаря этой особенности азид свинца в отличие от гремучей ртути не перепрессовывается и при увлажнении практически не теряет чувствительности к внешним воздействиям. Взаимодействует с металлической медью, образуя особо чувствительный к механическим воздействиям азид меди. Процесс образования азида меди ускоряется в присутствии влаги и углекислоты воздуха.
С металлическим алюминием азид свинца не реагирует.

Азид свинца применяется для снаряжения капсулей-детонаторов, однако вследствие относительно малой чувствительности азида свинца к лучу огня при снаряжении капсулей-детонаторов поверх слоя азида свинца всегда присутствует небольшой слой более чувствительного к лучу огня тринитрорезорцината свинца (тенереса).

Тенерес (ТНРС, тринитрорезорцинат свинца, стифнат свинца) C6H(NO2)3O2Pb - кристаллическое вещество желтого цвета с плотностью 3,1 г/см3. Хотя ТНРС и относят к разряду инициирующих ВВ, однако переход горения в детонацию в его зарядах происходит только при насыщенной плотности, причем и в этом случае предварительно сгорает сравнительно большая для инициирующих ВВ масса вещества (0,5 г в корпусе гильзы капсуля-детонатора №8).

ТНРС весьма чувствителен к лучу огня и поэтому применяется в капсулях‑детонаторах, снаряженных азидом свинца, чтобы облегчить воспламенение последнего. Применяется в ударных составах для снаряжения капсулей-воспламенителей.

 

Бризантные взрывчатые вещества

Тротил (ТНТ, тол, тринитротолуол) C6H3(NO2)3СН3 - кристаллический продукт бледно-желтого цвета с плотностью 1,66 г/см3, температурой плавления 80,8 °С. Насыпная плотность тротила примерно
0,9 г/см3, плотность литых зарядов примерно 1,56 г/см3.

Тротил представляет собой пластичное вещество, легко поддающееся прессованию (в заводских условиях получают заряды плотностью 1,60 г/см3). Тротил малочувствителен к механическим воздействиям. Заряды тротила в литом виде не детонируют от капсуля‑детонатора №8. Промышленностью выпускается как кристаллический, так и чешуированный тротил.

Тротил является одним из основных бризантных ВВ и применяется для снаряжения различных боеприпасов как в чистом виде (прессованием, заливкой, шнекованием), так и в смесях с аммиачной селитрой и другими веществами.

Тетрил (тринитрофенилметилнитрамин) С6H2(NO2)3NCH3NO2 – кристаллическое вещество желтого цвета с плотностью 1,72 г/см3. Температура затвердевания тетрила 128,7 оС. Тетрил достаточно пластичен, поэтому прессованием удается получить изделие с плотностью до 1,67 г/см3. Скорость детонации тетрила выше, чем скорость детонации тротила. Тетрил заметно более чувствителен к внешним воздействиям, чем тротил. Применяется для снаряжения капсулей‑детонаторов в качестве вторичного заряда, а также в виде прессованных шашек в качестве промежуточного детонатора для усиления действия капсуля‑детонатора.

Гексоген (циклотриметилентринитроамин) C3H6N6O6 – белое кристаллическое вещество с плотностью 1,8 г/см3. При температуре
203,5 оС плавится с разложением. Гексоген относится к группе мощных бризантных ВВ. Скорость детонации гексогена лежит выше скорости детонации тротила и тетрила. Гексоген чувствителен к внешним воздействиям, поэтому для снаряжения боеприпасов применяется не в чистом виде, а с добавлением различных флегматизаторов. Гексоген применяется в смесях с другими, менее чувствительными бризантными ВВ, а также как вторичный заряд для снаряжения капсулей‑дето-наторов.

ТЭН (пентаэритриттетранитрат) C(CH2ONO2)4 – белое кристаллическое вещество с плотностью 1,77 г/см3 и температурой плавления 141 оС. Прессуется ТЭН трудно (расслаивается при высоких давлениях прессования). Относится, как и гексоген, к мощным бризантным ВВ. ТЭН более чувствителен, чем гексоген, к внешним воздействиям.
В герметичной оболочке горение ТЭН сравнительно легко переходит в детонацию. Применяется для изготовления детонирующих шнуров и снаряжения капсулей-детонаторов в качестве вторичного заряда, в флегматизированном виде – для снаряжения мелкокалиберных зарядов.

 

Метательные взрывчатые вещества (пороха)

 

Характерное отличие порохов от ВВ заключается в том, что горение не переходит в процесс детонации даже при больших плотностях заряжания. Однородная структура и высокая плотность пороховых зерен обеспечивают их устойчивое и равномерное горение.

Черный порох (дымный порох) представляет собой смесь 75 % селитры, 10 % серы и 15 % угля. Однородная масса черного пороха имеет плотность 1,5-1,6 г/см3, а для прессованных образцов до
1,7-1,9 г/см3. Дымный порох легко воспламеняется от луча огня и чувствителен к механическим воздействиям. Применяется для изготовления огнепроводного шнура, а также в качестве воспламенительных зарядов при воспламенении бездымного пороха.

Бездымный порох (коллоидный) представляет собой сложную смесь, основными компонентами которой являются пироксилин (коллоксилин) и нитроглицерин.

Существует много различных рецептур бездымных порохов, которые влияют как на внешний вид пороха, так и на его баллистические качества (скорость горения и её зависимость от давления, мощность, температура и т.д.). Например, пироксилиновые пороха имеют в своем составе до 98 % пироксилина, а баллиститные  (нитроглицериновые) наряду с пироксилином содержат также в виде нелетучего растворителя нитроглицерин в количестве от 25 до 45 %.   

Все бездымные пороха относятся к категории ВВ, стойкость которых обязательно проверяется в течение хранения их на складах. Это определяется тем, что в состав порохов входят пироксилин и нитроглицерин, т.е. вещества, имеющие в составе молекул эфирную группу.

 

2.2 Средства воспламенения и инициирования

 

При производстве различных испытаний ВВ в качестве средств воспламенения и инициирования применяется огнепроводный (бикфордов) шнур, детонирующий шнур, капсуль‑детонатор и электродетонатор.

Огнепроводный шнур состоит из внешней оплетки и сердцевины, представляющей собой плотно спрессованный дымный порох. Обычно оболочкой шнура является трехслойная оплетка из льняной или джутовой нити. Огнепроводный шнур применяется для передачи луча огня капсулю-детонатору или пороховому заряду в заданный промежуток времени. Скорость горения шнура порядка 1 см/с.

Детонирующий шнур в отличие от огнепроводного шнура, имеет сердцевину из взрывчатого вещества, способного детонировать при малых диаметрах. Для изготовления детонирующего шнура применяются смеси горючей ртути с тетрилом (гремучертутнотетриловый шнур) или чистые ВВ, например ТЭН (тэновый шнур). Детонирующий шнур предназначен для передачи детонации от одного заряда к другому и для одновременного возбуждения детонации ряда зарядов.

Внешний вид детонирующего шнура отличается от внешнего вида огнепроводного цветом наружной оплетки (оплетка детонирующего шнура красная или оранжевая). Скорость детонации шнура от 7000 до 7700 м/с.

Капсуль-детонатор №8 представляет собой металлическую гильзу диаметром 7 мм и длиной 47±1 мм, снаряженную инициирующим или инициирующим и бризантным веществом (комбинированный капсуль‑детонатор). Основное назначение капсулей-детонаторов – возбуждение детонации различных зарядов бризантных ВВ. На рисун-
ке 2.1 приведен схематический разрез капсуля‑детонатора №8.

Как видно на фигуре, поверх инициирующего ВВ запрессовывается чашечка с отверстием, назначение которой – обеспечить стойкость заряда при механических воздействиях.

Электродетонатор мгновенного действия состоит из капсуля‑детонатора, в гильзу которого вмонтирован электровоспламенитель (рисунок 2.2). В практике наиболее распространенным является твердокапельный электрозапал, состоящий из двух проводников, к концам которых припаян константановый мостик. Концы проводов и мостик путем обмакивания в воспламенительный состав покрываются каплей этой массы. При пропускании тока через электрозапал мостик накаливается и воспламеняет воспламенительный состав капли, в результате чего возникает мощный луч огня. Комбинацию электрозапала и капсуля‑детонатора называют электродетонатором мгновенного действия.

 

1 – гильза; 2 – тетрил; 3 – азид свинца; 4 – тенерес; 5 - гашечка     Рисунок 2.1 – Схема капсуля-детонатора №8 1 – корпус; 2 – воспламенительный состав; 3 - мостик накаливания   Рисунок 2.2 – Схема электровоспламенителя

 

2.3 Смесевые взрывчатые вещества

 

Смеси на основе жидких нитропарафинов и солей гидразина (астралиты)

 

Жидкие ВВ давно привлекали внимание исследователей в связи с повышенной плотностью, малым критическим диаметром, способностью целиком заполнять зарядный объём и тем самым обеспечивать высокую концентрацию энергии и эффективность взрывания. Жидкие ВВ не растворяются в воде, не смешиваются с ней и являются водоустойчивыми. Обладают хорошей текучестью даже при минусовых температурах, что облегчает механизацию зарядных работ. Наибольший интерес представляют жидкие нитропарафины и ВВ на их основе. Особое внимание в этом классе соединений уделяется нитрометану, который имеет явно выраженные взрывчатые свойства. Нитрометан предназначен для взрывных работ в нефтедобывающей и горной промышленности для внутрипластового взрывания.

В таблице 2.1 приведены свойства эвтектических бинарных смесей нитропарафинов с аммиачной селитрой [7]. Видно, что по энергетическим характеристикам смесь, содержащая нитрометан, превосходит аналогичную смесь, содержащую тротил.

 

Таблица 2.1 – Свойства смесей нитропарафинов с аммиачной селитрой

Наиме­но­вание нитро­па­ра­финов

Содержа­ние аммиач­ной селитры в сте­хио­мет­ри­­чес­кой смеси, %

Плот­ность, г/см3

Теплота взрыва

Объём газов взрыва, л/кг

Относительная эффективность к тротилу, %

весовая, кДж/кг объёмная, кДж/л
Тротил (эталон) 78,7 1,30 4200 5500 892 100
Нитрометан 67,0 1,32 4710 6210 930 112
Нитроэтан 84,0 1,32 4030 5290 950 95
Нитро- пропан 87,5 1,30 4000 5400 961 94

Так как нитрометан тяжелее воды и не смешивается с ней, им можно заряжать обводненные скважины через столб воды, которая в данном случае будет выполнять роль забойки. Недостатком нитрометана является его высокая летучесть.

Взрывчатые свойства нитрометана следующие: бризантность
15 мм при инициировании от шашки тетрила массой 5 г и 22 мм от шашки 10 г; работоспособность по баллистической мортире 134 % по отношению к тротилу; скорость детонации в металлической трубе 6…6,5 км/с.

При введении в нитрометан алюминия массовая энергия взрыва повышается в 1,4-1,5 раза, а объёмная в 1,6-2,0 раза. По приближенным оценкам в благоприятных условиях взрывания во взрывчатом превращении может участвовать до 25 % алюминия. Объёмная энергия таких бинарных систем от 8400 до 9660 кДж/л, что превосходит объёмную энергию алюмотола, граммонала и акватола на 28…45 %.

На основе загущенного нитрометана и измельченной селитры готовятся пластичные высокоплотные и высоководоустойчивые ВВ, не уступающие по мощности динамитам и в то же время отличающиеся от них малой токсичностью, высокой морозостойкостью, низкими чувствительностью к механическим воздействиям и стоимостью. Взрывчатые свойства пластичных нитрометановых ВВ следующие: теплота взрыва от 6300 до 7560 кДж/л, бризантность от 14 до 19 мм, работоспособность от 380 до 490 мл, скорость детонации от 4,7 до 5,8 км/с.

Смеси на основе гидрата гидразина (NH2NH2H2O), за рубежом называемые астралитами, характеризуются высокими расчетными энергетическими показателями. Кроме простейшей смеси гидразина с аммиачной селитрой, запатентованы многокомпонентные жидкие составы. Взрывчатой основой в таких системах служат нитрат и перхлорат гидразина. К достоинствам жидких гидразинсодержащих ВВ можно отнести широкий температурный диапазон эксплуатации  (от минус 30 до плюс 45 оС), высокие плотность (1,3…1,4 г/см3) и скорость детонации (7,5…8 км/с), безопасность в обращении. Благодаря высокой плотности объёмная энергия заряда в скважине может достигать
5650 кДж/л. Объём продуктов взрыва достигает 1000 л/кг. Недостатком астралитов является их низкая физическая стойкость из-за испарения гидразина. Астралиты можно готовить на месте применения смешиванием нитратов и перхлоратов гидразина с жидким аммиаком или растворами аммиачной селитры.

 

Смесевые эмульсионные ВВ

 

Несмотря на достигнутый в настоящее время уровень использования в промышленности широкого класса разработанных ВВ, работы по поиску повышения эффективности взрыва путем применения новых составов ВВ и конструкций зарядов продолжаются.

В высокоразвитых горнодобывающих странах на предприятиях, ведущих взрывные работы открытым способом, и в военном деле достаточно широко применяются смеси в виде эмульсии, сенсибилизированной ( от лат. sensibilis – чувствительный, повышение чувствительности ) ее аэрацией с алюминиевым порошком АСД, получившие название «тяжелые АНФО». При этом содержание АСД в такой смеси обычно составляет от 70 до 80 % по массе. Этот тип смесевых эмульсионных ВВ используют для заряжания механизированным способом сухих или слабообводненных взрывных скважин с поверхности. Эти ВВ имеют меньшую стоимость и улучшенные детонационные характеристики, обусловленные, главным образом, применением в гранулированной фазе пористой аммиачной селитры высочайшего качества. Скорость детонации подобного смесевого ВВ на основе плотной гранулированной аммиачной селитры (гранулит НП) при плотности зарядов 1,2 г/см3 в стальной оболочке (Æ75…100 мм) составляет всего от 2,86 до 3,26 км/с, что свидетельствует о флегматизирующем влиянии большого содержания АСД на детонационные параметры таких смесей.

Для повышения эффективности взрыва такой смеси и поднятия КПД взрыва её основной составляющей (гранулита) была предложена конструкция заряда коаксиальной формы: по оси заряда гранулита размещается линейный инициатор из сенсибилизированной эмульсии, скорость детонации которой существенно превышает стационарную скорость детонации гранулита. В роли линейного инициатора по детонационным параметрам использованы эмульсионные ВВ сибирит-1000 или сибирит-1200, которые характеризуются высокой скоростью детонации [8].

Оценка относительной работоспособности зарядов различной формы (рисунок 2.3) проводилась по методу воронки выброса.

 

1 – электродетонатор №8; 2 – прессованная шашка ТГ – 10 г;
3 – прессованная шашка из тротила – 80 г; 4,6 - гранулированное ВВ;
5 – эмульсионное ВВ

 

Рисунок 2.3 - Конструкция сплошного (а) и комбинированного (б)
коаксиального зарядов, использованных при экспериментах [8]

 

Критерий относительной работоспособности f – отношение масс зарядов из эталонного (m Э) и испытываемого (m ВВ) взрывчатых веществ, образующих при взрыве воронки одинакового объёма:

.                                                (2.1)

При проведении эксперимента в качестве эталонного ВВ использовалась смесь гранулированного и чешуйчатого ТНТ в соотношении 50/50 по массе.

К параметрам, определяющим в первом приближении эффективность взрыва заряда ВВ в горной породе, относятся объёмная энергия Е и скорость детонации D. При этом коэффициент мощности взрывчатых веществ K= E×D является комплексным показателем, учитывающим как количество выделяемой при взрыве заряда энергии, так и скорость ее высвобождения. В относительном виде коэффициент K позволяет сравнить взрывную эффективность двух зарядов ВВ одинакового объёма, соответственно испытываемого (индекс 2) и эталонного (индекс 1).

,                        (2.2)

 

где  - плотность ВВ, кг/м3

Q - теплота взрыва, кДж/кг;

D – скорость детонации, км/с.

Для оценки относительной эффективности взрыва комбинированного заряда коаксиального типа, сформированного из эмульсионного ВВ сибирита-1200 и гранулита НП (рисунок 2.3 б), по сравнению с обычным зарядом гранулита НП вышеприведенная формула (2.2) примет вид:

 

,                   (2.3)

 

где  - доля соответственно сибирита-1200 и гранулита НП в единице объёма комбинированного заряда;

,   - соответственно плотность сибирита-1200 и гранулита НП;

DС, DНП, DР.НП - соответственно скорость детонации сибири-
та-1200, гранулита НП в стационарном режиме и гранулита НП в режиме принудительной детонации.

Аналогичным образом оценивается относительное удешевление комбинированного заряда коаксиального типа в сравнении с обычным зарядом гранулита НП:

 

,                   (2.4)

 

где СС, СНП - цена одной тонны соответственно сибирита-1200 и гранулита НП, руб.

Результаты экспериментальных испытаний (таблица 2.2) смесевых эмульсионных ВВ показали, что применение комбинированных зарядов коаксиальной формы с осевым зарядом из эмульсионного ВВ приводит к более полному выделению энергии при взрыве гранулита НП, изготовленного с использованием плотной гранулированной аммиачной селитры.

Таблица 2.2 – Результаты экспериментальных испытаний ВВ

ВВ Конструкция заряда Относительная работоспособность
ТНТ (гранулы / чешуйки 50/50) Сплошная 1,00
Гранулит НП Сплошная 0,56
Гранулит НП (пористая АС) Сплошная 1,10
Сибирит 2500 РЗ Коаксиальная 1,00
Сибирит 2500 РЗ (пористая АС) Коаксиальная 1,47

Разработанное смесевое эмульсионное ВВ сибирит 2500 Р3 допущено Госгортехнадзором России к постоянному применению, изготовляется в процессе механизированного заряжания скважин и применяется на ряде разрезов Кузбасса.

Предложенный способ формирования комбинированного заряда коаксиальной формы из эмульсионного ВВ и ВВ типа АСД позволяет повысить эффективность использования простейших ВВ, изготовленных на основе гранулированной аммиачной селитры, использовать промышленные смесительно-зарядные машины типа МС-38.

 

2.4 Физико-химические основы взрывных превращений

 

При взрыве происходит быстрое физическое, химическое, ядерное или термоядерное превращение вещества, сопровождающееся столь же быстрым переходом возникшей при этом энергии взрыва в энергию сжатия и движения исходного вещества или продуктов его превращения и окружающей среды. Виды исходной энергии при этом могут быть различны: тепловая, электрическая, кинетическая, энергия упругого сжатия, ядерная, термоядерная и химическая.

Взрывы за счет химической энергии присущи особой группе веществ – взрывчатым веществам.

Взрывчатые вещества обладают относительной термодинамической неустойчивостью. Именно благодаря этому они способны под влиянием внешних воздействий к чрезвычайно быстрым химическим превращениям, которые сопровождаются выделением тепла и образованием газообразных продуктов. Большая скорость, с которой ВВ превращаются в газообразные продукты, является необходимым условием взрыва. Скорость взрывных превращений достигает от 9 до 10 км/с. При совершении механической работы по перемещению или разрушению требуется затратить эквивалентное количество тепловой энергии, выделяющейся при химическом превращении ВВ. Выделение тепла при химической реакции является вторым необходимым условием взрыва. Для современных ВВ теплота взрывного превращения составляет от 400 до 3000 ккал/кг. Для преобразования теплоты химической реакции в механическую работу необходимо рабочее тело. Таким рабочим телом являются газообразные продукты, количество которых при взрыве 1 кг ВВ достигает от 500 до1000 л.

Таким образом, сочетание трех факторов: большой скорости процесса, выделения большого количества тепла и газообразных продуктов – делает возможным химический взрыв.


























Реологические свойства

 

К реологическим свойствам относятся пластичность и текучесть ВВ.

Пластичность – способность ВВ легко деформироваться под воздействием небольших нагрузок и сохранять придаваемую им форму. Пластичные промышленные ВВ характеризуются высоковязкой структурой, обусловленной наличием в них пластификаторов и связующих, в динамитах в виде динамитного желатина (раствор нитроклетчатки в нитроглицерине или нитрогликоле), в водосодержащих ВВ – в виде водного геля. Пластичные свойства ВВ зависят от вязкости динамитного желатина и его содержания в ВВ.

К пластичным промышленным ВВ относятся динамиты, содержащие взрывчатую желатину, и высоковязкие водосодержащие ВВ (акваниты, акваналы, гелеобразные акватолы). При очень высокой вязкости желатина и значительном содержании его в составе ВВ приобретают резиноподобную структуру, деформация становится упругой, ВВ теряет свойство пластичности. К таким ВВ, в частности, относятся динамиты, содержащие более 60 % желатины.

Текучесть – способность ВВ вытекать из емкостей под действием силы тяжести. Этим свойством помимо собственно жидких ВВ обладают низковязкие суспензии – смеси жидкостей и порошкообразных наполнителей. Как и жидкости, такие системы могут перекачиваться по трубам и шлангам с помощью насосов различной конструкции.

Некоторые пластичные ВВ при хранении приобретают структуру твердого тела и вновь становятся пластичными при разминании. Такое явление называется тиксотропией. Для стабилизации пластичности в состав ВВ вводят добавки поверхностно-активных веществ, таких как алкиламины.

Исследования структурно-механических (реологических) свойств показали, что водосодержащие ВВ как с алюминием, так и сенсибилизированные тротилом, по характеру аномалии вязкости относятся к неньютоновским жидкостям с ярко выраженными вязкопластичными и тиксотропными свойствами. При снижении вязкости увеличивается текучесть водосодержащих ВВ, которая обратно пропорциональна вязкости. Вязкость и пластичность ВВ определяется с помощью консистометра Геплера, которым измеряют скорость проникновения иглы с шариком на конце в массу вещества или деформацию цилиндриков из ВВ при действии на них в течение определенного времени заданной нагрузки. В таблице 3.4 приведены данные об изменении пластичности динамита и водосодержащего ВВ, определенные на консистометре
Геплера.

 

Таблица 3.4 – Пластичность динамита и водосодержащего ВВ

ВВ

Усадка (мм) столбиков диаметром 10 мм высотой
8,5 мм при постоянной нагрузке и различных Т, °С

-10 -15 -20 -25
Динамит 4,14 1,50 0,81 0
Водосодержащее ВВ 4,8 0,37 0,27 0

 

Для определения пластичности ВВ чаще пользуются более простым прибором – пенетрометром (от лат. penetro - проникаю). Пластичность оценивается в этом случае скоростью проникновения иглы пенетрометра. Ниже приведены результаты испытания  водосодержащего ВВ (ВВВ) пенетрометром (таблица 3.5).

Таблица 3.5 – Результаты определения пластичности пенетрометром

Содержание воды в ВВ, % 4 6 8 10
Время проникновения иглы до основания столбика из ВВ высотой 40 мм, с 180 50 30 10

В полевых условиях пластичность ВВ качественно можно оценить по способности изделий разминаться в руке и сплющиваться в шпуре или скважине при нажатии забойником.

 

3.3 Разрушающие факторы взрывчатых веществ

 

Детонация ВВ

Детонация представляет собой самоподдерживающийся процесс перемещения по ВВ со сверхзвуковой скоростью ударного фронта (скачка давления), сопровождающийся химическим превращением вещества. Химическая реакция возникает в результате адиабатического сжатия и разогрева вещества в ударном фронте. Комплекс из ударного фронта и зоны химической реакции называется детонационной волной. Давление на ударном фронте имеет порядок от десятков атмосфер (газы) до сотен тысяч атмосфер (мощные бризантные вещества). Установившаяся (стационарная) детонационная волна распространяется по ВВ с постоянной скоростью (от 1 до 10 км/с). Постоянство параметров детонационной волны объясняется тем, что потери энергии, связанные со сжатием и вовлечением в движение вещества, компенсируются теплом, выделяющимся в ударно-сжатом ВВ при его химическом превращении.

Первую математическую модель детонационной волны в газах, опирающуюся на теорию ударных волн, в виде гидродинамической теории детонации разработали в конце прошлого века одновременно несколько ученых – В.А. Михельсон в России, Д.Л. Чепмен в Англии, Е. Жуге во Франции. Эта модель не рассматривает кинетики (пространственно-временных характеристик) химической реакции в детонационной волне, а представляет ударный фронт в ней формально в виде поверхности разрыва, отделяющей исходное вещество от продуктов его химического превращения. В подвижной системе координат процесс представляется таким образом, что в ударный фронт втекает вещество в исходном состоянии и вытекает из него в виде продуктов своего химического превращения. В этом случае, как и в теории ударных волн, но с учётом энерговыделения при детонации, основные соотношения между начальными и конечными параметрами состояния вещества, а также кинематическими параметрами детонации – скоростью перемещения фронта (скоростью детонации) D и массовой скоростью движения продуктов превращения за фронтом U находят из законов сохранения массы, количества движения (импульса) и энергии в волне.

Развитие эта теория получила в работах Я.Б. Зельдовича [10],
Д. Неймана, В. Деринга, независимо предложивших модель детонационной волны, учитывающую физическую зону превращения исходного ВВ в конечные продукты (зону «химпика»). Основные представления об этой модели дают рисунки 3.1 и 3.2. На рисунке 3.1 схематически показан профиль детонационной волны в координатах «давление-расстояние», а на рисунке 3.2 - PV‑диаграмма волны.

 

Рисунок 3.1 - Профиль детонационной волны Рисунок 3.2 - PV-диаграмма детонационной волны

Согласно данной модели исходное вещество с начальными параметрами P0, V0 (точка А на рисунке 3.2) сжимается в ударном фронте до состояния, отвечающего точке В. В этом состоянии в результате адиабатического сжатия и разогрева в веществе возникает экзотермическая реакция взрывного превращения, заканчивающаяся в точке С, называемой точкой Жуге или Чепмена-Жуге и лежащей на адиабате продуктов детонации (адиабате Гюгонио). Процесс превращения сопровождается расширением нагретых газообразных продуктов детонации (ПД), поэтому давление ПД в точке Жуге Рж примерно в два раза ниже, чем в точке В. За точкой Жуге (плоскостью Чепмена-Жуге) происходит дальнейший спад давления в ПД вследствие их расширения (волна разгрузки). Прямую АВ, являющуюся касательной к адиабате Гюгонио в точке Жуге, называют прямой Михельсона.

На рисунке 3.1 адиабатическому сжатию вещества отвечает прямая АВ с очень малым наклоном относительно оси абсцисс, что свидетельствует о крайне малом времени сжатия и малой толщине сжатого слоя. Зоне химического пика отвечает участок ВС на кривой спада давления, точка излома С отвечает точке Жуге, участок за этой точкой характеризует спад давления в расширяющихся продуктах детонации.

Исходя из гидродинамической модели, основными соотношениями для детонационной волны являются, согласно законам сохранения:

массы , (3.5)
импульса , (3.6)
энергии , (3.7)

где U – массовая скорость движения продуктов взрыва за фронтом;

D - скорость детонации ВВ;

Е1, Е2 – внутренняя энергия продуктов взрыва соответственно в начальном и конечном состоянии;

Qвзр – теплота взрыва;

V0 и P0 – соответственно удельный объём и давление исходного вещества;

P и V – соответственно давление и удельный объём продуктов детонации.

Совместное решение уравнений (3.5) и (3.6) дает формулы для расчета кинетических параметров детонации:

,                                (3.8)

.                                    (3.9)

Данные выражения являются одной из форм записи уравнения ударной адиабаты Гюгонио для продуктов детонации.

Большинство исследователей пришли к выводу, что при
r0³1 г/см3 скорость детонации (D) может быть описана линейной зависимостью вида

D= A+ B(r0)                               (3.10)

или, как это предложил М.А. Кук:

D2= D1+ M(r2-r1),                          (3.11)

где D2 и D1 – скорость детонации при плотности ВВ соответственно r2 и r1;

М –  размерный коэффициент.

М.А. Кук в качестве усредненного коэффициента М рекомендует величину 3500. Значения коэффициентов А, В и величин D1,0 (плотность 1,0 г/см3) и D1,6 (плотность 1,6 г/см3)  для некоторых веществ приведены в таблице 3.6 [7].

 

Таблица 3.6 – Значения коэффициентов А, В и величин D1,0 и D1,6 для некоторых ВВ

Вещество А, км/с В D1,0 , км/с D1,6 , км/с
Тротил 1,84 3,20 5,10 6,97
Гексоген 2,40 3,59 6,08 8,03
Гексоген флегматизированный 2,12 3,80
Октоген 2,56 3,48 6,09 8,08
Октоген флегматизированный 1,09 4,31
ТЭН 2,25 3,41 5,90 7,85

Приведенные основные соотношения в детонационной волне приемлемы для случая плоской волны, когда вся потенциальная химическая энергия реализуется в детонационной волне и определяет параметры детонации – её скорость, давление и другие. В случае неодномерного течения за ударным фронтом параметры детонации в определенных границах становятся зависимыми от поперечных размеров заряда, как это впервые показал Ю.Б. Харитон. Так как зона химического превращения в детонационной волне имеет конечные размеры, то за время химической реакции (участок ВС на рисунке 3.2) образующиеся сжатые газообразные продукты стремятся к расширению в радиальном направлении. В результате этого в зону реакции с боковой поверхности входит волна разрежения, а охваченная ею масса вещества теряется как поставщик энергии относительного ударного фронта. Так как глубина проникновения волны разрежения обратно пропорциональна радиусу заряда, то относительные потери энергии в детонационной волне должны уменьшаться с увеличением радиуса заряда, т.е. детонация может устойчиво распространяться по заряду, если продолжительность реакции t в волне меньше времени разброса вещества q  в радиальном направлении. Исходя из этого, существует такой минимальный диаметр заряда d кр, при котором еще возможно устойчивое распространение детонации. Этот диаметр называется критическим диаметром детонации. Его величина находится из условий устойчивости:

, , , (3.12)

где а - ширина зоны реакции;

d з – диметр заряда взрывчатого вещества;

w - скорость волны разрежения, равная скорости звука в расширяющихся продуктах детонации;

U – массовая скорость.

При d з >d кр потери энергии в детонационной волне должны уменьшаться, а параметры волны соответственно возрастать, асимптотически приближаясь к своему максимуму. Диаметр заряда, при котором параметры детонации близки к максимальным (рисунок 3.3), называют предельным диаметром детонации d пр. Детонацию, протекающую в заряде с d кр < d з < d пр, называют детонацией в неидеальном
режиме.

Критический диаметр зависит от многих физико-химических факторов и уменьшается с увеличением реакционной способности ВВ, которая зависит от природы вещества, его физического состояния – размеров частиц, пористости (плотности) заряда, для смесевых ВВ – от равномерности смешивания. На рисунке 3.4 приведена зависимость критического диаметра заряда тротила от плотности при различных размерах частиц.

Рисунок 3.3 - Зависимость скорости детонации от диаметра заряда (D И - идеальная скорость детонации) Рисунок 3.4 - Зависимость критического диаметра заряда тротила от плотности при различных размерах частиц: 1 – от 0,01 до 0,05 мм; 2 – от 0,07 до 0,20 мм

 

Критические диаметры детонации в стеклянных трубках для некоторых веществ при их плотности около 1,0 г/см3 и размере частиц от 0,05 до 0,20 мм приведены в таблице 3.7.

Таблица 3.7 – Критические диаметры детонации некоторых ВВ
в стеклянных трубах при плотности 1,0 г/см3 и размере частиц
от 0,05 до 0,20 мм

Вещество d кр, мм
Азид свинца 0,01-0,02
ТЭН 1,0-1,5
Гексоген 1,0-1,5
Тротил 8-10
Нитроглицерин 1-2
Аммонит 6Ж В 10-12

 

Для жидких и газообразных ВВ имеются другие объяснения критических условий распространения детонации. Они основываются на механизме срыва реакции на стенке. Соответственно значение dкр определяется не временем собственно реакции в детонационной волне, а временем индукции этой реакции, развивающейся по законам теплового взрыва. При диаметре меньше критического теплового взрыва не происходит. Такой механизм [11] позволяет объяснить очень малый диапазон между значениями dкр и dпр для жидких ВВ.

Для твердых промышленных ВВ характерен большой разрыв между величинами dкр и dпр, их отношение может достигать 10. Так, например, значение dкр тонкодисперсных аммонитов в открытых зарядах диаметром 40 мм составляет 150 мм, а максимальная скорость детонации фиксируется в зарядах диаметром более 200…300 мм (рисунок 3.5). В прочных оболочках этот разрыв сужается.








Учебное пособие

 

Редактор Соловьёва С.В.

 

Подписано в печать 17.02.2006. Формат 60´84 1/16

Усл. п. л. - 8,06. Уч.-изд. л. - 9,25

Печать - ризография, множительно-копировальный
аппарат «RISO TR-1510»

 

Тираж 150 экз. Заказ 2006-19

Издательство Алтайского государственного

технического университета

656038, г. Барнаул, пр. Ленина, 46

 

Оригинал-макет подготовлен ИИО БТИ АлтГТУ

 

Отпечатано в ИИО БТИ АлтГТУ

659305, г. Бийск, ул. Трофимова, 29

 


Бийский технологический институт (филиал)

 

С.Л. Раско, А.Г. Овчаренко

 

 

ЭКСПЛУАТАЦИОННАЯ БЕЗОПАСНОСТЬ
КОНДЕНСИРОВАННЫХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ


Учебное пособие

 

Рекомендовано Сибирским региональным учебно-методическим
центром высшего профессионального образования
для межвузовского использования в качестве учебного пособия
для студентов, обучающихся по направлениям «Химические технологии энергонасыщенных материалов и изделий» и «Горное дело»
при изучении раздела дисциплины «Безопасность жизнедеятельности»

 

 

Барнаул 2006

УДК 662.2:658.382

ББК 35.63

Р-24

 

Раско, С. Л. Эксплуатационная безопасность конденсированных взрывчатых веществ: учебное пособие / С.Л. Раско, А.Г. Овчаренко.

 

Алт. гос. тех. ун-т, БТИ. - Бийск.

Изд-во Алт. гос. тех. ун-та, 2006. - 147 с.

 

В пособии изложены материалы по основам эксплуатационной безопасности при использовании конденсированных взрывчатых веществ. Обобщены научные и практические достижения в этой области на основе известных работ, приведены конкретные примеры. Даны основные положения теории и физические основы термодинамики взрывчатых веществ, критерии безопасности и некоторые методы их определения, а также основные меры по обеспечению безопасности при использовании взрывчатых веществ.  

Учебное пособие содержит дополнительные сведения, необходимые для изучения раздела «Взрывная безопасность» курса «Безопасность жизнедеятельности». Рекомендуется студентам вузов, обучающимся по направлениям «Химические технологии энергонасыщенных материалов и изделий» и «Горное дело». Будет полезным для специалистов предприятий и организаций, занимающихся эксплуатацией взрывчатых веществ.

 

 

Рецензенты: д.т.н., профессор зав. каф. «Безопасность
                         жизнедеятельности» АлтГТУ им. И. И. Ползунова
                         Мироненко В. Ф.

                д.т.н. нач. отдела промышленных ВВ
                         ФГУП ФНПЦ «Алтай» Петров Е. А.

 

ISBN 5-9257-0082-1

 

ã Раско С.Л., Овчаренко А.Г., 2006

ã БТИ АлтГТУ, 2006

 

Содержание

 

 

ВВЕДЕНИЕ______________________________________________ 4
1 ВЗРЫВЧАТЫЕ ВЕЩЕСТВА - ИСТОЧНИКИ ЭНЕРГИИ______ 6
1.1 Анализ опасности взрывчатых веществ__________________ 6
1.2 Область применения взрывчатых веществ________________ 9
2 ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ВЗРЫВЧАТЫХ ВЕЩЕСТВ_______________________________________________   11
2.1 Основные типы взрывчатых веществ и их классификация___ 11
2.2 Средства воспламенения и инициирования________________ 15
2.3 Смесевые взрывчатые вещества_________________________ 16
2.4 Физико-химические основы взрывных превращений_______ 21
2.5 Горение взрывчатых веществ___________________________ 25
2.6 Возбуждение взрывных превращений и начальный импульс_________________________________________________   26
3 физические основы термодинамики ВЗРЫВЧАТЫХ ВЕЩЕСТВ_________________________________ 30
3.1 Энергетические характеристики________________________ 30
3.2 Стойкость взрывчатых веществ_________________________ 33
3.3 Разрушающие факторы взрывчатых веществ______________ 38
4 критерии безопасности ВЗРЫВЧАТЫХ ВЕЩЕСТВ____ 65
4.1 Чувствительность к тепловому импульсу_________________ 66
4.2 Чувствительность к механическим воздействиям__________ 70
4.3 Критерии оценки взрывоопасности при вибрации__________ 81
4.4 Чувствительность ВВ к разрядам статического электричества_____________________________________________   88
4.5 Чувствительность ВВ к совместному воздействию_________ 96
5 обеспечение безопасности при эксплуатации взрывчатых веществ_________________________________   99
5.1 Оценка разрушающей способности взрывов и безопасности человека от ударной волны_________________________________   100
5.2 Токсичность взрывчатых веществ и продуктов взрыва______ 108
5.3 Оценка безопасности при механических воздействиях______ 116
5.4 Оценка электростатической безопасности при эксплуатации ВВ ______________________________________   123
5.5 Безопасность взрывных работ при наличии блуждающих токов____________________________________________________   138
Литература___________________________________________ 143

 

 

Введение

 

Взрывчатые вещества (ВВ) как высококонцентрированный и экономичный источник энергии кроме оборонной отрасли широко применяют в различных отраслях народного хозяйства. Около 90 % всего объёма руд цветных и черных металлов в нашей стране добывают взрывным способом. Более 80 % всех промышленных ВВ используется в горнорудной промышленности. Массовые взрывы широко используются в строительстве, при сооружении плотин и насыпей, прокладке магистралей, водных каналов, нефтегазопроводов. Продолжается поиск и исследование дальнейших путей использования и управления энергией взрыва. В настоящее время применяется взрывной способ производства некоторых особенно ценных минералов и искусственных материалов, ускоряются отдельные химические процессы с использованием сверхвысоких давлений взрыва, проводятся работы по искусственному дождеванию, внедряются методы взрывного бурения.

Наряду с интенсификацией производственных процессов с использованием высокоэффективных ВВ и разработкой современных ВВ с более чувствительными компонентами выдвигаются повышенные требования безопасности работ на всех этапах соприкосновения человека с взрывчатыми материалами. Проблема безопасности была и остается актуальной на стадиях проектирования, подготовки, испытания, изготовления и применения ВВ.

Безопасность различных видов взрывных работ в значительной степени зависит от теоретических знаний и накопленного опыта при создании безопасных технологий. При контактировании человека с взрывчатыми материалами большую роль играет психологический фактор, когда понимание механизма процессов взрывного превращения позволяет более уверенно и качественно выполнять требования инструкций, правил и других нормативных документов.

К сожалению, как показывает практика, аварии и взрывы с человеческими жертвами часто происходят по причине несовершенства отдельных технических средств, ошибочных действий производственного персонала и руководителей предприятий, а также нарушений требований технологической документации  вследствие безответственного отношения к работе и недостатка знаний в области безопасности технологических процессов.

Следовательно, необходимо постоянно обновлять знания в области безопасности технологических процессов всем работникам предприятий, проектных организаций и органов надзора.

В предлагаемом читателю пособии изложены материалы по основам эксплуатационной безопасности при использовании конденсированных ВВ. Под конденсированными взрывчатыми веществами понимаются порошкообразные, твердомонолитные, гранулированные, чешуированные, пластичные, эластичные, пастообразные, желеобразные и жидкие взрывчатые вещества. Обобщены научные и практические достижения в этой области на основе исследований различных ученых,  приведены конкретные примеры.

В первом разделе дан краткий анализ опасности ВВ, которые при определенных обстоятельствах приводят к аварийной ситуации или катастрофам.

Во втором и третьем разделах изложены основные положения теории и термодинамики ВВ. Материал представлен в объёме, необходимом для понимания процессов возникновения и развития взрывных превращений. При этом использованы труды зарубежных и российских ученых.

В четвертом разделе описаны основные критерии безопасности ВВ, характеризующие минимальные воздействия на вещество, при которых начинаются взрывные превращения. Описаны методы и установки для их определения, приводятся экспериментальные результаты.

В пятом разделе дана оценка обеспечения безопасности при эксплуатации и испытании промышленных ВВ. Описаны критерии разрушающей способности взрыва и токсичности продуктов после взрыва. Приведена оценка электростатической безопасности и безопасности взрывных работ при наличии блуждающих токов.

В учебном пособии отражается круг вопросов по эксплуатационной безопасности ВВ, который является дополнительным материалом при изучении раздела «Взрывная безопасность» курса «Безопасность жизнедеятельности», рекомендуется студентам вузов, обучающимся по направлениям «Химические технологии энергонасыщенных материалов и изделий» и «Горное дело», а также будет полезным для специалистов предприятий и организаций, занимающихся эксплуатацией взрывчатых веществ.

Авторы не претендуют на всю полноту рассматриваемого вопроса, поэтому с благодарностью примут все пожелания и замечания по данному учебному пособию.

 

1 Взрывчатые вещества – источники энергии

 

1.1 Анализ опасности взрывчатых веществ

 

В нашей стране многие годы было принято, что тема трагических событий и катастроф в сфере материального производства всегда оставалась закрытой для широкой общественности. Информация о крупномасштабных взрывах и пожарах, валовых выбросах токсичных продуктов была весьма приблизительной, а о гибели людей и других тяжелых последствиях знали лишь должностные лица, не заинтересованные, как правило, в широкой огласке. Является неполной и информация о катастрофах прошлого века за рубежом в Фликсборо, Сан-Хуан-Иксуатепеке, в Бхопале и многих других местах, где погибли тысячи работающих и часть населения, проживающего вблизи промышленных объектов.

Потребовались трагические события на Чернобыльской АЭС, магистральном трубопроводе сжиженного нефтяного газа под Уфой, в хранилище жидкого аммиака в Ионаве (Литва), на нефтеперера-батывающей установке Ярославля, чтобы общество начало осознавать необходимость переоценки уровня существующей технической безо-пасности применяемых технологий, оборудования, систем управления и защиты от промышленных аварий и катастроф.

Наибольшую опасность при авариях представляют взрывчатые вещества. Для убедительности можно привести ряд исторических примеров значительного воздействия взрывчатых веществ, происшедших вследствие сознательных действий человека или аварийных ситуаций [1]. Один из самых колоссальных взрывов произошел 10 октября 1885 г. у входа в Нью-Йоркскую гавань. Под действием трех раздельных ударов, напоминающих толчки при землетрясении, в обширной зоне вокруг места взрыва произошло сотрясение почвы; на площади 400´250 м на высоту 60 м поднялся столб морской воды, выбрасывавший в воздух пену, ярко окрашенную газообразными продуктами взрыва. Этот гигантский гейзер возник в результате взрыва огромной подводной скалы, так называемый Флуд Рок (рифа Hell Gate - Адских ворот); большая часть этой скалы располагалась ниже уровня воды. Эта скала представляла собой гнейсовую массу, пронизанную кварцевыми жилами. Силою неслыханно большого заряда взрывчатого вещества она была снесена, и таким образом было устранено препятствие, затруднявшее судоходство.

Сначала в скале были проложены две шахты глубиною 20 м, которые выходили на поверхность воды, а затем вся скалистая масса была пройдена сетью штолен общей длиной 6600 м и шириною 3,5 м, при этом было вынуто около 60000 м3 породы (рисунок 1.1). Самая большая галерея была длиною 360 м; толщина сводов, подлежавших взрыву, колебалась от 3 до 6 м. Как в сводах, так и в стенках штолен было заложено в общей сложности 13280 буровых скважин глубиною 2,7 м и диаметром 12 см, заряженных патронами рекарока, герметично запаянными в медные гильзы, в которые предварительно вкладывался патрон динамита с электрозапалом, соединенным с общей сетью воспламенения. Количество израсходованных взрывчатых веществ составило 109000 кг рекарока и 19050 кг гурдинамита. Воспламенение было произведено после частичного затопления штолен водою. Хотя все заряды взорвались одновременно, получились три отдельных сотрясения соответственно трем различным средам (вода, воздух и земля), в которых удар взрыва распространяется с разной скоростью. Взорванная площадь скалы составляла 180000 м2, а расходы исчислялись цифрою
5¼ млн. франков.

 

 
Рисунок 1.1 - Подготовка к взрыванию рифа Флуд-Рок в Нью-Йоркской гавани

Более красноречивым доказательством передачи взрыва на расстояние была ужасная катастрофа в гавани Галифакс. Утром 7 декабря 1917 года около 9 часов французский транспорт «Монблан» с грузом боевых припасов столкнулся при входе в бухту с направляющимся навстречу ему бельгийским продовольственным транспортом «Има». «Монблан», имевший водоизмещение 3121 тонн и шедший с полным грузом, получил удар в носовую часть; запасы бензина, расположенные в переднем трюме, разлились по судну и воспламенились. В то время как команда всеми средствами пыталась побороть огонь, транспорт приблизился к набережной. Между тем горящий бензин попал в топки. Команда потеряла надежду справиться с бедствием и, будучи уверена в том, что всякая дальнейшая борьба бесполезна, оставила горящее судно. Через 17 минут после столкновения последовал взрыв, напоминающий извержение вулкана; часть города Ричмонд (штат  Виржиния на юго-востоке США), расположенная амфитеатром на берегу моря, была сровнена с землей; взрывом было на месте убито 5000 и ранено 10000 человек. Убытки исчислялись сотнями млн. франков.

Действие взрыва на расстоянии было исключительное. В 7 км от бухты телеграфист был убит ударом о стену. В 10 км севернее города была разрушена колония индейцев, и многие из них были погребены под развалинами. Даже на расстоянии 100 км были выбиты оконные стекла.

21 сентября 1921 г. в Оппау подрывы, производившиеся в складе искусственного удобрения (смесь нитрата и сульфата аммония), вызвали величайший взрыв, подобный извержению вулкана. На том месте, где хранилось 4500 тонн соли, зиял кратер длиною 165 м, шириною
96 м и глубиною 18,5 м. При этом было убито 509 человек и 1917 жителей окружающей местности пострадали.

Возникшие взрывные волны достигли самых высоких слоев воздуха, и оттуда, как бы с неба, распространились на далекие расстояния.      В 360 км от места взрыва, в горной долине Энгодина, исполинский взрыв был воспринят как звуковая волна.

6 июня 1989 г. газета «Правда» сообщила о трагедии вблизи железнодорожной станции г. Арзамаса. Утром 4 июня взлетели на воздух три крытых вагона с промышленными ВВ, предназначенными для геологов, горняков, строителей. Общая масса ВВ составляла 120 тонн.
В результате взрыва были разрушены большой жилой массив, станционные постройки; погибло большое число людей. Очевидцы наблюдали, что вначале возник высокий столб пламени, затем прошел гул, и в небо начал подниматься серый «гриб». Из первых сообщений стало известно, что погибли 68 человек, полностью разрушено 150 жилых домов. О силе взрыва можно судить также из сообщений очевидцев, наблюдавших, как за километр от места взрыва летели куски рельсов, в кирпичном здании на расстоянии 0,5 км от железной дороги наблюдались пробоины в полуразрушенных стенах. На железнодорожном пути на месте взрыва образовалась воронка «вполовину футбольного поля» и глубиной около 30 м. За взрывом последовал пожар от воспламенения природного газа, выходящего из разрушенного магистрального подземного трубопровода, который пересекал железнодорожный путь. В сообщениях газет упоминалось о материальном ущербе, исчисляемом в 400 млн. руб.

Данные примеры показывают колоссальную мощность источников энергии ВВ, которые могут кроме полезного действия принести сокрушительные разрушения с негативными последствиями.

В химической индустрии мира в среднем каждые 2 месяца происходит одна катастрофа. За период с начала 1984 г. до конца первого полугодия 1985 г. зарегистрировано 90 крупных аварий, при которых погибло около 5 тысяч человек. Более половины промышленных катастроф в период 1900-1990 гг. приходится на 1970-1990 гг., причем треть из них – на 80-е годы; одновременно возрос их разрушительный эффект.

На химико-технологических объектах нашей страны за 1980-2000 гг. произошло примерно 180 крупных промышленных взрывов с тяжелыми последствиями. Отмечается неуклонное увеличение их числа за последние годы [2]. При этом локальные взрывы и пожары, ежегодное число которых исчисляется тысячами, при неблагоприятном стечении обстоятельств могут вызвать цепное развитие аварий до катастрофических масштабов.

 

1.2 Область применения взрывчатых веществ

 

На протяжении многих веков ВВ состоят на службе у человека.
И сегодня существуют области человеческой деятельности, где без взрывчатых веществ обойтись невозможно. Это использование их в военном деле и в промышленных целях.

Взрывчатыми веществами снаряжаются боеприпасы различных типов: ракеты, снаряды, мины, торпеды, авиационные бомбы и др. ВВ являются основным средством, обеспечивающим поражение живой силы, боевой техники и разрушение объектов различного назначения.

Для доставки боеприпасов до цели широко используются метательные ВВ – пороха. Пороховой заряд сообщает боеприпасу скорость, необходимую для его переброски на дальние расстояния или поражения быстродвижущихся целей.

Появление новых видов современного оружия не только не снизило значения ВВ и порохов, а, наоборот, расширило область их применения. Они используются в противотанковых и зенитных управляемых ракетах, ракетах оперативно-тактического назначения, авиационных и глубинных бомбах. Для осуществления взлета современных истребителей применяются пороховые стартовые ускорители.

Даже в ядерном и термоядерном оружии не обходятся без взрывчатых веществ. Чтобы произошел ядерный взрыв, необходимо быстрое соединение нескольких частей ядерного заряда (делящегося вещества), масса которых в отдельности меньше, а в сумме больше критической. Быстрое соединение субкритических масс ядерного заряда достигается взрывом обычного ВВ.

ВВ находят применение и в народном хозяйстве [3]. С помощью ВВ выполняются разнообразные работы. Энергия взрыва принята на вооружение человека как одно из многих средств ускорения и значительного снижения трудоемкости горных и земляных работ. С помощью взрыва почти мгновенно можно получить необходимую глубину для прокладки дороги в горах или котлован для устройства сооружения. ВВ с успехом используются при строительстве плотин, каналов, для углубления и расширения рек и водоемов. При добыче полезных ископаемых взрыв очень часто является единственным средством.          

Подземный взрыв может быть источником звуковых или сейсмических волн. Направление движения и скорость этих волн зависят от свойств горных пород. Произведя небольшой подземный взрыв и регистрируя на некотором расстоянии от места взрыва с помощью измерительных приборов время прибытия сейсмических волн, можно получить данные о расположении невидимых отражающих поверхностей, рассчитать их глубину, угол наклона и изучить структуру пород. Взрывом осуществляют резку и сварку металлов. Взрыв является средством научного исследования. При взрыве имеют место очень высокие температуры, скорости и давления. Это позволяет изучить явления, возникающие при сильном воздействии на вещество, и способствует раскрытию новых свойств материи.

Приведенными примерами не исчерпывается все многообразие случаев практического использования ВВ. Способы и область применения ВВ постоянно совершенствуются одновременно с разработкой новых ВВ, обладающих более эффективными взрывчатыми свойст-вами.

 

2 ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ВЗРЫВЧАТЫХ
ВЕЩЕСТВ

 

2.1 Основные типы взрывчатых веществ и их классификация

 

Взрывчатые вещества весьма разнообразны по своему химическому составу, физическим свойствам и агрегатному состоянию. Известно много ВВ, представляющих собой твердые, жидкие и газообразные вещества. В принципе взрывчатым веществом может быть любая смесь горючего с окислителем. Самое древнее ВВ – дымный порох, который представляет собой смесь двух горючих (уголь и сера) с окислителем (калиевая селитра). Другой вид подобных смесей – оксиликвиты – представляют собой смесь тонкодисперсного горючего (мох, опилки и т.д.) с жидким кислородом.

Необходимым условием получения ВВ из горючего и окислителя является их тщательное перемешивание. Однако как бы тщательно не были перемешаны составные части смеси, невозможно добиться такой равномерности состава, при которой с каждой молекулой горючего соседствовала бы молекула окислителя. Поэтому в механических смесях скорость химической реакции при взрывном превращении никогда не достигает максимального значения. Такого недостатка не имеют взрывчатые химические соединения, в молекулу которых входят атомы горючего (углерода, водорода) и атомы окислителя (кислорода).

К взрывчатым химическим соединениям, молекулы которых содержат атомы горючих элементов и кислорода, относятся сложные азотнокислые эфиры многоатомных спиртов, так называемые нитроэфиры, и нитросоединения ароматических углеводородов.

Взрывчатые вещества по своим свойствам делятся на инициирующие, бризантные и метательные. В некоторых случаях говорят соответственно о первичных, вторичных ВВ и порохах.

Характерной особенностью инициирующих ВВ (ИВВ) является их способность детонировать под влиянием простого внешнего импульса (луча огня, удара, трения и т.д.), тогда как для детонации бризантных ВВ (БВВ) требуется предварительный взрыв инициирующего ВВ. Деление ВВ на инициирующие и бризантные до некоторой степени условно. Так, для ряда ИВВ можно создать такие условия, при которых горение не переходит в детонацию, т.е. ИВВ ведут себя как бризантные ВВ. И наоборот, некоторые бризантные ВВ в особых условиях воспламенения через сравнительно короткое время детонируют, т.е. ведут себя как инициирующие ВВ. Как в первом, так и во втором случаях требуются особые условия.

Способность ИВВ детонировать от простого импульса требует чрезвычайно осторожного обращения с ними и, что особенно важно, при работе с ними не пользоваться большими количествами единовременно.

Пороха, благодаря особенностям своей структуры, а именно
однородности и монолитности пороховых элементов, обеспечивают устойчивое и равномерное горение. Даже при давлениях от 4000 до 5000 атмосфер пороха устойчиво горят не детонируя. Однако при достаточном начальном импульсе можно вызвать также и детонацию порохов. Таким образом, хотя три группы ВВ и выполняют различные функции, однако органического различия между ними нет.

Ниже приведены общие характеристики некоторых представителей ИВВ, БВВ и порохов, наиболее широко используемых в военных и промышленных целях.

 

Инициирующие взрывчатые вещества

Гремучая ртуть Hg(OCN)2 - кристаллическое вещество белого или серого цвета с плотностью 4,307 г/см3. Заряд гремучей ртути в прессованном виде (давление прессования 300 кг/см2) имеет плотность, равную 3,3 г/см3. При действии луча огня гремучая ртуть воспламеняется, но горение быстро переходит в детонацию. При увеличении давления прессования условия перехода горения гремучей ртути в детонацию ухудшаются. Запрессованная под давлением более 800 кг/см2 в корпусе гильзы капсуля-детонатора №8 гремучая ртуть сгорает без детонации (явление перепрессовки гремучей ртути). Увлажнение её резко снижает чувствительность к внешним воздействиям. В присутствии влаги гремучая ртуть взаимодействует с металлическим алюминием, поэтому ее не прессуют в алюминиевую оболочку.

Гремучая ртуть достаточно чувствительна к лучу огня. Применяется для снаряжения капсулей-детонаторов и в ударных составах для снаряжения капсулей-воспламенителей.

Азид свинца Pb(N3)2 - кристаллическое вещество белого цвета с плотностью 4,71 г/см3. Плотность прессованного заряда азида свинца 3,9 г/см3.

Азид свинца под влиянием внешнего воздействия детонирует без предварительного горения. Благодаря этой особенности азид свинца в отличие от гремучей ртути не перепрессовывается и при увлажнении практически не теряет чувствительности к внешним воздействиям. Взаимодействует с металлической медью, образуя особо чувствительный к механическим воздействиям азид меди. Процесс образования азида меди ускоряется в присутствии влаги и углекислоты воздуха.
С металлическим алюминием азид свинца не реагирует.

Азид свинца применяется для снаряжения капсулей-детонаторов, однако вследствие относительно малой чувствительности азида свинца к лучу огня при снаряжении капсулей-детонаторов поверх слоя азида свинца всегда присутствует небольшой слой более чувствительного к лучу огня тринитрорезорцината свинца (тенереса).

Тенерес (ТНРС, тринитрорезорцинат свинца, стифнат свинца) C6H(NO2)3O2Pb - кристаллическое вещество желтого цвета с плотностью 3,1 г/см3. Хотя ТНРС и относят к разряду инициирующих ВВ, однако переход горения в детонацию в его зарядах происходит только при насыщенной плотности, причем и в этом случае предварительно сгорает сравнительно большая для инициирующих ВВ масса вещества (0,5 г в корпусе гильзы капсуля-детонатора №8).

ТНРС весьма чувствителен к лучу огня и поэтому применяется в капсулях‑детонаторах, снаряженных азидом свинца, чтобы облегчить воспламенение последнего. Применяется в ударных составах для снаряжения капсулей-воспламенителей.

 

Бризантные взрывчатые вещества

Тротил (ТНТ, тол, тринитротолуол) C6H3(NO2)3СН3 - кристаллический продукт бледно-желтого цвета с плотностью 1,66 г/см3, температурой плавления 80,8 °С. Насыпная плотность тротила примерно
0,9 г/см3, плотность литых зарядов примерно 1,56 г/см3.

Тротил представляет собой пластичное вещество, легко поддающееся прессованию (в заводских условиях получают заряды плотностью 1,60 г/см3). Тротил малочувствителен к механическим воздействиям. Заряды тротила в литом виде не детонируют от капсуля‑детонатора №8. Промышленностью выпускается как кристаллический, так и чешуированный тротил.

Тротил является одним из основных бризантных ВВ и применяется для снаряжения различных боеприпасов как в чистом виде (прессованием, заливкой, шнекованием), так и в смесях с аммиачной селитрой и другими веществами.

Тетрил (тринитрофенилметилнитрамин) С6H2(NO2)3NCH3NO2 – кристаллическое вещество желтого цвета с плотностью 1,72 г/см3. Температура затвердевания тетрила 128,7 оС. Тетрил достаточно пластичен, поэтому прессованием удается получить изделие с плотностью до 1,67 г/см3. Скорость детонации тетрила выше, чем скорость детонации тротила. Тетрил заметно более чувствителен к внешним воздействиям, чем тротил. Применяется для снаряжения капсулей‑детонаторов в качестве вторичного заряда, а также в виде прессованных шашек в качестве промежуточного детонатора для усиления действия капсуля‑детонатора.

Гексоген (циклотриметилентринитроамин) C3H6N6O6 – белое кристаллическое вещество с плотностью 1,8 г/см3. При температуре
203,5 оС плавится с разложением. Гексоген относится к группе мощных бризантных ВВ. Скорость детонации гексогена лежит выше скорости детонации тротила и тетрила. Гексоген чувствителен к внешним воздействиям, поэтому для снаряжения боеприпасов применяется не в чистом виде, а с добавлением различных флегматизаторов. Гексоген применяется в смесях с другими, менее чувствительными бризантными ВВ, а также как вторичный заряд для снаряжения капсулей‑дето-наторов.

ТЭН (пентаэритриттетранитрат) C(CH2ONO2)4 – белое кристаллическое вещество с плотностью 1,77 г/см3 и температурой плавления 141 оС. Прессуется ТЭН трудно (расслаивается при высоких давлениях прессования). Относится, как и гексоген, к мощным бризантным ВВ. ТЭН более чувствителен, чем гексоген, к внешним воздействиям.
В герметичной оболочке горение ТЭН сравнительно легко переходит в детонацию. Применяется для изготовления детонирующих шнуров и снаряжения капсулей-детонаторов в качестве вторичного заряда, в флегматизированном виде – для снаряжения мелкокалиберных зарядов.

 

Метательные взрывчатые вещества (пороха)

 

Характерное отличие порохов от ВВ заключается в том, что горение не переходит в процесс детонации даже при больших плотностях заряжания. Однородная структура и высокая плотность пороховых зерен обеспечивают их устойчивое и равномерное горение.

Черный порох (дымный порох) представляет собой смесь 75 % селитры, 10 % серы и 15 % угля. Однородная масса черного пороха имеет плотность 1,5-1,6 г/см3, а для прессованных образцов до
1,7-1,9 г/см3. Дымный порох легко воспламеняется от луча огня и чувствителен к механическим воздействиям. Применяется для изготовления огнепроводного шнура, а также в качестве воспламенительных зарядов при воспламенении бездымного пороха.

Бездымный порох (коллоидный) представляет собой сложную смесь, основными компонентами которой являются пироксилин (коллоксилин) и нитроглицерин.

Существует много различных рецептур бездымных порохов, которые влияют как на внешний вид пороха, так и на его баллистические качества (скорость горения и её зависимость от давления, мощность, температура и т.д.). Например, пироксилиновые пороха имеют в своем составе до 98 % пироксилина, а баллиститные  (нитроглицериновые) наряду с пироксилином содержат также в виде нелетучего растворителя нитроглицерин в количестве от 25 до 45 %.   

Все бездымные пороха относятся к категории ВВ, стойкость которых обязательно проверяется в течение хранения их на складах. Это определяется тем, что в состав порохов входят пироксилин и нитроглицерин, т.е. вещества, имеющие в составе молекул эфирную группу.

 

2.2 Средства воспламенения и инициирования

 

При производстве различных испытаний ВВ в качестве средств воспламенения и инициирования применяется огнепроводный (бикфордов) шнур, детонирующий шнур, капсуль‑детонатор и электродетонатор.

Огнепроводный шнур состоит из внешней оплетки и сердцевины, представляющей собой плотно спрессованный дымный порох. Обычно оболочкой шнура является трехслойная оплетка из льняной или джутовой нити. Огнепроводный шнур применяется для передачи луча огня капсулю-детонатору или пороховому заряду в заданный промежуток времени. Скорость горения шнура порядка 1 см/с.

Детонирующий шнур в отличие от огнепроводного шнура, имеет сердцевину из взрывчатого вещества, способного детонировать при малых диаметрах. Для изготовления детонирующего шнура применяются смеси горючей ртути с тетрилом (гремучертутнотетриловый шнур) или чистые ВВ, например ТЭН (тэновый шнур). Детонирующий шнур предназначен для передачи детонации от одного заряда к другому и для одновременного возбуждения детонации ряда зарядов.

Внешний вид детонирующего шнура отличается от внешнего вида огнепроводного цветом наружной оплетки (оплетка детонирующего шнура красная или оранжевая). Скорость детонации шнура от 7000 до 7700 м/с.

Капсуль-детонатор №8 представляет собой металлическую гильзу диаметром 7 мм и длиной 47±1 мм, снаряженную инициирующим или инициирующим и бризантным веществом (комбинированный капсуль‑детонатор). Основное назначение капсулей-детонаторов – возбуждение детонации различных зарядов бризантных ВВ. На рисун-
ке 2.1 приведен схематический разрез капсуля‑детонатора №8.

Как видно на фигуре, поверх инициирующего ВВ запрессовывается чашечка с отверстием, назначение которой – обеспечить стойкость заряда при механических воздействиях.

Электродетонатор мгновенного действия состоит из капсуля‑детонатора, в гильзу которого вмонтирован электровоспламенитель (рисунок 2.2). В практике наиболее распространенным является твердокапельный электрозапал, состоящий из двух проводников, к концам которых припаян константановый мостик. Концы проводов и мостик путем обмакивания в воспламенительный состав покрываются каплей этой массы. При пропускании тока через электрозапал мостик накаливается и воспламеняет воспламенительный состав капли, в результате чего возникает мощный луч огня. Комбинацию электрозапала и капсуля‑детонатора называют электродетонатором мгновенного действия.

 

1 – гильза; 2 – тетрил; 3 – азид свинца; 4 – тенерес; 5 - гашечка     Рисунок 2.1 – Схема капсуля-детонатора №8 1 – корпус; 2 – воспламенительный состав; 3 - мостик накаливания   Рисунок 2.2 – Схема электровоспламенителя

 

2.3 Смесевые взрывчатые вещества

 

Смеси на основе жидких нитропарафинов и солей гидразина (астралиты)

 

Жидкие ВВ давно привлекали внимание исследователей в связи с повышенной плотностью, малым критическим диаметром, способностью целиком заполнять зарядный объём и тем самым обеспечивать высокую концентрацию энергии и эффективность взрывания. Жидкие ВВ не растворяются в воде, не смешиваются с ней и являются водоустойчивыми. Обладают хорошей текучестью даже при минусовых температурах, что облегчает механизацию зарядных работ. Наибольший интерес представляют жидкие нитропарафины и ВВ на их основе. Особое внимание в этом классе соединений уделяется нитрометану, который имеет явно выраженные взрывчатые свойства. Нитрометан предназначен для взрывных работ в нефтедобывающей и горной промышленности для внутрипластового взрывания.

В таблице 2.1 приведены свойства эвтектических бинарных смесей нитропарафинов с аммиачной селитрой [7]. Видно, что по энергетическим характеристикам смесь, содержащая нитрометан, превосходит аналогичную смесь, содержащую тротил.

 

Таблица 2.1 – Свойства смесей нитропарафинов с аммиачной селитрой

Наиме­но­вание нитро­па­ра­финов

Содержа­ние аммиач­ной селитры в сте­хио­мет­ри­­чес­кой смеси, %

Плот­ность, г/см3

Теплота взрыва

Объём газов взрыва, л/кг

Относительная эффективность к тротилу, %

весовая, кДж/кг объёмная, кДж/л
Тротил (эталон) 78,7 1,30 4200 5500 892 100
Нитрометан 67,0 1,32 4710 6210 930 112
Нитроэтан 84,0 1,32 4030 5290 950 95
Нитро- пропан 87,5 1,30 4000 5400 961 94

Так как нитрометан тяжелее воды и не смешивается с ней, им можно заряжать обводненные скважины через столб воды, которая в данном случае будет выполнять роль забойки. Недостатком нитрометана является его высокая летучесть.

Взрывчатые свойства нитрометана следующие: бризантность
15 мм при инициировании от шашки тетрила массой 5 г и 22 мм от шашки 10 г; работоспособность по баллистической мортире 134 % по отношению к тротилу; скорость детонации в металлической трубе 6…6,5 км/с.

При введении в нитрометан алюминия массовая энергия взрыва повышается в 1,4-1,5 раза, а объёмная в 1,6-2,0 раза. По приближенным оценкам в благоприятных условиях взрывания во взрывчатом превращении может участвовать до 25 % алюминия. Объёмная энергия таких бинарных систем от 8400 до 9660 кДж/л, что превосходит объёмную энергию алюмотола, граммонала и акватола на 28…45 %.

На основе загущенного нитрометана и измельченной селитры готовятся пластичные высокоплотные и высоководоустойчивые ВВ, не уступающие по мощности динамитам и в то же время отличающиеся от них малой токсичностью, высокой морозостойкостью, низкими чувствительностью к механическим воздействиям и стоимостью. Взрывчатые свойства пластичных нитрометановых ВВ следующие: теплота взрыва от 6300 до 7560 кДж/л, бризантность от 14 до 19 мм, работоспособность от 380 до 490 мл, скорость детонации от 4,7 до 5,8 км/с.

Смеси на основе гидрата гидразина (NH2NH2H2O), за рубежом называемые астралитами, характеризуются высокими расчетными энергетическими показателями. Кроме простейшей смеси гидразина с аммиачной селитрой, запатентованы многокомпонентные жидкие составы. Взрывчатой основой в таких системах служат нитрат и перхлорат гидразина. К достоинствам жидких гидразинсодержащих ВВ можно отнести широкий температурный диапазон эксплуатации  (от минус 30 до плюс 45 оС), высокие плотность (1,3…1,4 г/см3) и скорость детонации (7,5…8 км/с), безопасность в обращении. Благодаря высокой плотности объёмная энергия заряда в скважине может достигать
5650 кДж/л. Объём продуктов взрыва достигает 1000 л/кг. Недостатком астралитов является их низкая физическая стойкость из-за испарения гидразина. Астралиты можно готовить на месте применения смешиванием нитратов и перхлоратов гидразина с жидким аммиаком или растворами аммиачной селитры.

 

Смесевые эмульсионные ВВ

 

Несмотря на достигнутый в настоящее время уровень использования в промышленности широкого класса разработанных ВВ, работы по поиску повышения эффективности взрыва путем применения новых составов ВВ и конструкций зарядов продолжаются.

В высокоразвитых горнодобывающих странах на предприятиях, ведущих взрывные работы открытым способом, и в военном деле достаточно широко применяются смеси в виде эмульсии, сенсибилизированной ( от лат. sensibilis – чувствительный, повышение чувствительности ) ее аэрацией с алюминиевым порошком АСД, получившие название «тяжелые АНФО». При этом содержание АСД в такой смеси обычно составляет от 70 до 80 % по массе. Этот тип смесевых эмульсионных ВВ используют для заряжания механизированным способом сухих или слабообводненных взрывных скважин с поверхности. Эти ВВ имеют меньшую стоимость и улучшенные детонационные характеристики, обусловленные, главным образом, применением в гранулированной фазе пористой аммиачной селитры высочайшего качества. Скорость детонации подобного смесевого ВВ на основе плотной гранулированной аммиачной селитры (гранулит НП) при плотности зарядов 1,2 г/см3 в стальной оболочке (Æ75…100 мм) составляет всего от 2,86 до 3,26 км/с, что свидетельствует о флегматизирующем влиянии большого содержания АСД на детонационные параметры таких смесей.

Для повышения эффективности взрыва такой смеси и поднятия КПД взрыва её основной составляющей (гранулита) была предложена конструкция заряда коаксиальной формы: по оси заряда гранулита размещается линейный инициатор из сенсибилизированной эмульсии, скорость детонации которой существенно превышает стационарную скорость детонации гранулита. В роли линейного инициатора по детонационным параметрам использованы эмульсионные ВВ сибирит-1000 или сибирит-1200, которые характеризуются высокой скоростью детонации [8].

Оценка относительной работоспособности зарядов различной формы (рисунок 2.3) проводилась по методу воронки выброса.

 

1 – электродетонатор №8; 2 – прессованная шашка ТГ – 10 г;
3 – прессованная шашка из тротила – 80 г; 4,6 - гранулированное ВВ;
5 – эмульсионное ВВ

 

Рисунок 2.3 - Конструкция сплошного (а) и комбинированного (б)
коаксиального зарядов, использованных при экспериментах [8]

 

Критерий относительной работоспособности f – отношение масс зарядов из эталонного (m Э) и испытываемого (m ВВ) взрывчатых веществ, образующих при взрыве воронки одинакового объёма:

.                                                (2.1)

При проведении эксперимента в качестве эталонного ВВ использовалась смесь гранулированного и чешуйчатого ТНТ в соотношении 50/50 по массе.

К параметрам, определяющим в первом приближении эффективность взрыва заряда ВВ в горной породе, относятся объёмная энергия Е и скорость детонации D. При этом коэффициент мощности взрывчатых веществ K= E×D является комплексным показателем, учитывающим как количество выделяемой при взрыве заряда энергии, так и скорость ее высвобождения. В относительном виде коэффициент K позволяет сравнить взрывную эффективность двух зарядов ВВ одинакового объёма, соответственно испытываемого (индекс 2) и эталонного (индекс 1).

,                        (2.2)

 

где  - плотность ВВ, кг/м3

Q - теплота взрыва, кДж/кг;

D – скорость детонации, км/с.

Для оценки относительной эффективности взрыва комбинированного заряда коаксиального типа, сформированного из эмульсионного ВВ сибирита-1200 и гранулита НП (рисунок 2.3 б), по сравнению с обычным зарядом гранулита НП вышеприведенная формула (2.2) примет вид:

 

,                   (2.3)

 

где  - доля соответственно сибирита-1200 и гранулита НП в единице объёма комбинированного заряда;

,   - соответственно плотность сибирита-1200 и гранулита НП;

DС, DНП, DР.НП - соответственно скорость детонации сибири-
та-1200, гранулита НП в стационарном режиме и гранулита НП в режиме принудительной детонации.

Аналогичным образом оценивается относительное удешевление комбинированного заряда коаксиального типа в сравнении с обычным зарядом гранулита НП:

 

,                   (2.4)

 

где СС, СНП - цена одной тонны соответственно сибирита-1200 и гранулита НП, руб.

Результаты экспериментальных испытаний (таблица 2.2) смесевых эмульсионных ВВ показали, что применение комбинированных зарядов коаксиальной формы с осевым зарядом из эмульсионного ВВ приводит к более полному выделению энергии при взрыве гранулита НП, изготовленного с использованием плотной гранулированной аммиачной селитры.

Таблица 2.2 – Результаты экспериментальных испытаний ВВ

ВВ Конструкция заряда Относительная работоспособность
ТНТ (гранулы / чешуйки 50/50) Сплошная 1,00
Гранулит НП Сплошная 0,56
Гранулит НП (пористая АС) Сплошная 1,10
Сибирит 2500 РЗ Коаксиальная 1,00
Сибирит 2500 РЗ (пористая АС) Коаксиальная 1,47

Разработанное смесевое эмульсионное ВВ сибирит 2500 Р3 допущено Госгортехнадзором России к постоянному применению, изготовляется в процессе механизированного заряжания скважин и применяется на ряде разрезов Кузбасса.

Предложенный способ формирования комбинированного заряда коаксиальной формы из эмульсионного ВВ и ВВ типа АСД позволяет повысить эффективность использования простейших ВВ, изготовленных на основе гранулированной аммиачной селитры, использовать промышленные смесительно-зарядные машины типа МС-38.

 

2.4 Физико-химические основы взрывных превращений

 

При взрыве происходит быстрое физическое, химическое, ядерное или термоядерное превращение вещества, сопровождающееся столь же быстрым переходом возникшей при этом энергии взрыва в энергию сжатия и движения исходного вещества или продуктов его превращения и окружающей среды. Виды исходной энергии при этом могут быть различны: тепловая, электрическая, кинетическая, энергия упругого сжатия, ядерная, термоядерная и химическая.

Взрывы за счет химической энергии присущи особой группе веществ – взрывчатым веществам.

Взрывчатые вещества обладают относительной термодинамической неустойчивостью. Именно благодаря этому они способны под влиянием внешних воздействий к чрезвычайно быстрым химическим превращениям, которые сопровождаются выделением тепла и образованием газообразных продуктов. Большая скорость, с которой ВВ превращаются в газообразные продукты, является необходимым условием взрыва. Скорость взрывных превращений достигает от 9 до 10 км/с. При совершении механической работы по перемещению или разрушению требуется затратить эквивалентное количество тепловой энергии, выделяющейся при химическом превращении ВВ. Выделение тепла при химической реакции является вторым необходимым условием взрыва. Для современных ВВ теплота взрывного превращения составляет от 400 до 3000 ккал/кг. Для преобразования теплоты химической реакции в механическую работу необходимо рабочее тело. Таким рабочим телом являются газообразные продукты, количество которых при взрыве 1 кг ВВ достигает от 500 до1000 л.

Таким образом, сочетание трех факторов: большой скорости процесса, выделения большого количества тепла и газообразных продуктов – делает возможным химический взрыв.


























Дата: 2019-12-10, просмотров: 275.