Устройство, работа и конструктивные особенности систем жидкостного охлаждения
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Радиатор 13 (см. рис. 1) предназначен для охлаждения горячей воды, выходящей из рубашки охлаждения двигателя. Располагается он впереди двигателя. Трубчатый радиатор состоит из верх­него и нижнего бачков, соединенных между собой тремя-четырьмя рядами латунных трубок. Поперечно расположенные горизонтальные пластины придают радиатору жесткость и увеличивают по­верхность охлаждения.

Рис. 1. Система жидкостного охлаждения двигателя:

1 — вентилятор, 2 — водя­ной насос, 3 —. компрес­сор; 4 — перепускной шланг, 5 — термостат, б — кран отопителя, 7, в — подводящий и отводящий трубопроводы, В — радиа­тор отопителя, 10 — дат­чик указателя температу­ры охлаждающей жидкос­ти, II, 12—сливные кра­ны, 13—радиатор, 14— жалюзи

 

Радиаторы двигателей ЗМЗ-53 и ЗИЛ-130 трубчато-ленточные со змейковыми охлаждающими пластинами (лентами), расположенными между трубками. Системы охлаждения этих двигателей , закрытые, поэтому пробки радиатора имеют паро­вой 1 и воздушный 2 клапаны (рис. 2, а, б).

 

Рис. 2. Пробка радиатора (а, б), вентилятор и центробежный насос(в):

а - открыт паровой клапан 1, б открыт воздушный клапан 2, в — вентилятор и центробежный насос сис­темы охлаждения двигате­ля ЗИЛ-130; 1—лопасть вентилятора, 2 — шкив, 3 —ступица шкива венти­лятора, 4 —втулка шкива, 5 —подшипник, б —вал на­соса, 7 —крыльчатка, в —корпус насоса, в — резиновый уплотнитель сальника, 10 —текстоли­товая шайба, 1I —обойма сальника, 12—подводящий патрубок.

 

Паровой клапан 1 открывается при избыточном давлении 0,045—0,055 МПа (0,45—0,55 кгс/см2) (ЗМЗ-24, ЗМЗ-53). При открытии клапана избыток воды или пара отводится через пароотводную труб­ку. Воздушный клапан 2 предохраняет радиатор от сжатия давлением воздуха и открывается при ох­лаждении воды, когда давление в системе снижает­ся на 0,01 МПа (0,10 кгс/см2).

Для слива жидкости из системы охлаждения открывают сливные краны 11 (см. рис. 1) блоков цилиндров и сливной кран 12 патрубка радиатора, а также пробку радиатора или расширительного бачка. У двигателей ЗИЛ сливные краны блоков ци­линдров и патрубка радиатора имеют дистанцион­ное управление. Рукоятки кранов выведены в под­капотное пространство над двигателем.

На автомобилях КамАЗ-5320 устанавливают рас­ширительный бачок,

предназначенный для ком­пенсации изменений объема жидкости, происходя­щих при работе двигателя. Впускной и выпускной клапаны размещаются в пробке этого бачка. На бач­ке имеется кран для контроля уровня антифриза Тосол-А40 или Тосол-А65, которым заправляется система охлаждения. В связи с использованием ан­тифриза вместо сливных краников установлены резьбовые конические пробки.

Расширительные бачки устанавливают также в системе охлаждения двигателей автомобилей «Жигули» и ГАЗ-24 «Волга».

Жалюзи 14 (см. рис. 1) створчатого типа предназначены для изменения количества воздуха, проходящего через радиатор. Управляет ими во­дитель с помощью троса и рукоятки, выведенной в кабину.

Водяной насос (рис. 2, в) служит для соз­дания циркуляции воды в системе охлаждения. Он состоит из корпуса 8. вала б, крыльчатки 7 и са­моуплотняющегося сальника. Располагается насос обычно в передней части блока цилиндров и имеет привод клиновидным ремнем от коленчатого вала двигателя. Шкив 2 приводит во вращение одновре­менно крыльчатку 7 водяного насоса и ступицу 3 вентилятора.

Самоуплотняющийся сальник состоит из рези­нового уплотнителя 9, графитизированной текстолитовой шайбы 10, обоймы 11 и пружины, прижи­мающей шайбу 10 к торцу подводящего патруб­ка 12.

Вентилятор предназначен для усиления по­тока воздуха, проходящего через радиатор. Вентиля­тор имеет обычно четыре—шесть лопастей 1. Для снижения шума лопасти располагают Х-образно, попарно под углом 70 и 110°. Изготовляют лопасти из листовой стали или пластмассы («Москвич-2140», ГАЗ-24 «Волга»).

Лопасти имеют отогнутые концы (ЗМЗ-53, ЗИЛ-130), что улучшает вентиляцию подкапотного пространства и повышает производительность вен­тиляторов. Иногда вентилятор располагают в ко­жухе, который способствует повышению скорости воздуха, просасываемого через радиатор.

Для уменьшения мощности, необходимой для привода вентилятора, и улучшения работы систе­мы охлаждения применяют вентиляторы с электро­магнитной муфтой. Эта муфта автоматически от­ключает вентилятор, когда температура воды в верхнем бачке радиатора ниже 350—358 К (78 85°С).

В привод вентилятора двигателя КамАЗ-740 включена гидромуфта, обеспечивающая плавную передачу вращения от коленчатого вала к венти­лятору.

Гидромуфта включается автоматически: по мере увеличения температуры Жидкости в системе ох­лаждения активная масса, находящаяся в баллоне включателя, плавится, и объем ее увеличивается, а это вызывает перемещение золотника, открываю­щего доступ масла из системы смазки в гидромуф­ту, Частота вращения вентилятора зависит от коли­чества масла, поступающего в гидромуфту. При прекращении подачи масла вентилятор отклю­чается.

В настоящее время стремительно развиваются «разумные» системы регулирования температуры охлаждающей жидкости т.к., например классический постоянный привод вентилятора и водяного насоса отнимает часть мощности двигателя при этом на относительно больших установившихся скоростях (движение по шоссе) зачастую работа вентилятора не нужна. Поэтому ниже будут описаны некоторые системы разумных вентиляторов.

Вентилятор — неотъемлемая часть системы охлаждения любого современного двигателя. При жидкостном охлаждении он просасывает воздух через радиатор, а при воздушном — подает этот самый воздух (здесь он выступает в роли охлаждающего тела) к нагретым частям мотора. И можно сказать, с момента появления вентиляторов инженеры решают, как сделать его привод оптимальным. Познакомимся с некоторыми результатами из усилий.

Простейшая конструкция привода вентилятора хорошо известна – клиновым ремнем от шкива, установленного на носке коленчатого вала. Но простое не всегда означает самое лучшее. Вентилятор работает постоянно, а значит, постоянно шумит, потребляет мощность, и немалую (3–6% от мощности двигателя), и, главное, охлаждает двигатель независимо от его температурного режима. Именно большая потребляемая мощность побудила отказаться от ременного привода в пользу шестерен на тяжелых двигателях. Чтобы привод не испытывал больших нагрузок при резкой смене режимов работы мотора (не забудьте – вентилятор тоже своего рода маховик и момент инерции его отнюдь не мал), устанавливают фрикционные, гидравлические или упругие резиновые муфты (рис. 3).

Рис. 3. Привод вентилятора с упругой муфтой: 1 – вентилятор; 2 – упругая муфта; 3 – шкив; 4 – шестерня привода вентилятора.

 Теперь о том, как заставить вентилятор работать таким образом, чтобы зря не остужать холодный двигатель, и интенсивно трудиться, когда мотору жарко. Одной из самых первых и простых систем регулирования была... замена вентилятора. В жаркое время года использовалась крыльчатка большей производительности, зимой – меньшей. Само собой, что регулирование осуществлялось очень грубо – вряд ли можно представить себе водителя, выбирающего вентиляторы в соответствии с прогнозом погоды и меняющего их чуть ли не ежедневно.

Такая система не решает и другой важной проблемы. Понятно, что конструкция вентилятора и его привода должна обеспечивать достаточное охлаждение, начиная с самых низких оборотов коленчатого вала. На больших же оборотах при жесткой механической связи это приведет к огромному перерасходу энергии: скажем, для машины среднего класса такой вентилятор на максимальных оборотах "съедал" бы около 8 кВт мощности двигателя, в то время как достаточная в таких условиях – не превышает 3–3,5 кВт. В этом причина того, что жесткая механическая передача в наше время почти не применяется.

Как известно, устройства, передающие и преобразующие крутящий момент, в технике называют трансмиссиями, значит, привод вентилятора тоже трансмиссия. Интересно, что многие

Рис. 4. Электромагнитная муфта включения вентилятора: 1 – шкив; 2 – контактное кольцо; 3 – угольная щетка; 4 – стальное кольцо; 5 – плоская пружина; 6 – вентилятор; 7 – электромагнит.

конструкции, призванные решать указанную выше проблему этого привода, обладают определенным сходством с "большой" трансмиссией автомобиля, передающей крутящий момент на его колеса. Здесь мы можем найти и сцепления, и гидромуфты, и вискомуфты (вязкостные муфты, напомним, сейчас нередко используют вместо межосевого дифференциала), и электрический привод. Рассмотрим наиболее распространенные из этих систем.

Электромагнитное сцепление (рис. 4) автоматически включает вентилятор по достижении определенной температуры охлаждающей жидкости.

Такая система применялась на автомобилях ГАЗ–24 ранних серий и многих современных им зарубежных. В этой системе на шкиве помещали мощный кольцевой соленоид. Когда срабатывает датчик, цепь соленоида замыкается и металлическое кольцо, связанное с вентилятором через пластинчатые пружины, примагничивается к шкиву: вентилятор включен и работает до тех пор, пока температура не снизится и управляющий датчик не снимет питания с электромагнита. Подобный же принцип реализован и в автомобилях с поперечным расположением двигателя: датчик температуры включает электродвигатель вентилятора.

В последнее время появились двухскоростные электродвигатели, позволяющие обеспечить ступенчатое регулирование: вентилятор отключен, работает в частичном режиме или на полную производительность. Есть машины и с двумя вентиляторами, которые вводятся в работу последовательно. Попутно заметим, что на тяжелых грузовых машинах и автобусах электровентиляторы – редкость. Представьте себе мощность электрооборудования (генератора, аккумулятора), которая потребуется, чтобы обеспечить необходимые такому вентилятору 10–12кВт. Вот почему здесь все еще царствует "чистая" механика.

На популярных автобусах "Икарус" ставят фрикционную муфту с пневмоприводном – своего рода сцепление, только на условную педаль здесь нажимает не нога, а сжатый воздух. Регулирование включения-отключения осуществляется, естественно, в зависимости от температуры охлаждающей жидкости.

Самые сложные системы умеют плавно регулировать скорость вентилятора. На многих легковых автомобилях (в качестве примера назовем большинство БМВ, "Мерседесов"), а также на некоторых грузовиках (в том числе и на отечественном ЗИЛ-4331) в привод вентилятора встроена вискомуфта (рис. 5).

Рис. 5. Вискомуфта вентилятора: 1 – крышка камеры; 2 – лепестковый клапан; 3 – биметаллический терморегулятор; 4 – крышка муфты; 5 – корпус муфты; 6 – ведущий диск; А – резервная полость.

 Коротко познакомим с работой такого устройства. Пока мотор не прогрелся, рабочая полость муфты пуста – специальная силиконовая жидкость находится в резервной полости. Двигатель прогревается, термоэластичная пластина постепенно открывает клапан, жидкость поступает в рабочую полость, и, когда проскальзывает между дисками, ее вязкость растет – муфта начинает передавать момент. С ростом температуры рабочая полость заполняется все больше, обороты вентилятора увеличиваются. Таким вот образом плавно регулируется производительность вентилятора. Вискомуфта сконструирована так, что на малых оборотах ее проскальзывание невелико, а при высоких – вентилятор заметно отстает. Это, повторим, позволяет заметно экономить энергию (а значит, и топливо) на высокой скорости, когда обдув радиатора достаточен.

Рис. 6. Гидромуфта привода вентилятора: 1 – шкив; 2 – ступица вентилятора; 3 – ведущее колесо гидромуфты; 4 – ведомое колесо гидромуфты; 5 – трубки подачи масла в рабочую полость; 6 – ведущий вал; А – рабочая полость.

 На тяжелых дизельных двигателях для бесступенчатого регулирования оборотов в механике привода нередко используется гидравлическая муфта (рис. 6), подобная той, что работает в автоматических коробках передач. Обороты вентилятора изменяются здесь в зависимости от заполнения полости между ведущим и ведомым колесами муфты. Количество масла, которое поступает из системы смазки двигателя, регулируется автоматически по температуре охлаждающей жидкости.

Гидромуфта используется и на некоторых двигателях воздушного охлаждения, например на известных у нас с давних пор дизелях "Дойц", стоявших на грузовых автомобилях "Магирус". Охлаждающей жидкости в "воздушнике", понятное дело, нет, и подачей масла в муфту управляет терморегулятор, который учитывает температуру воздуха на выходе из системы охлаждения и температуру выхлопных газов. Работа системы зависит и от температуры масла: с ростом ее вязкость последнего снижается, а значит, горячего (и жидкого) масла в рабочую полость муфты поступает больше. Интересная особенность: корпус муфты одновременно служит центрифугой для очистки масла.

На современных легковых автомобилях, легких грузовиках и микроавтобусах радиатор двигателя чаще всего оснащают электрическим вентилятором (рис. 7), у которого немало преимуществ по сравнению с механическим. Электрический включается только по достижении некоего верхнего предела температуры, а когда она придет в норму, тут же выключается.

Результат – более стабильный температурный режим двигателя. К тому же он быстрей прогревается после пуска, меньше расходует топлива. Включившийся электровентилятор вращается достаточно быстро даже при низких оборотах двигателя – и этим снижает риск перегрева при больших нагрузках в тяжелых дорожных условиях. Механический вентилятор в таких случаях не всегда эффективен. Примерные схемы электроприводов вентилятора приведены на рисунках ниже.

Рис. 7. Штатная схема включения электродвигателя вентилятора (ВАЗ, ГАЗ)

 

Казалось бы, перечнем достоинств тему можно и закрыть, да качество электротехники не позволяет. В чем же главная причина капризов электровентилятора? Его мотор потребляет ток до 15–20 А, включаясь по команде датчика температуры охлаждающей жидкости в радиаторе (рис. 7). Чтобы большой ток не шел напрямую через нежные контакты датчика 1, в штатной конструкции применили разгрузочное реле 2. Решение естественное, но не безупречное – на российских автомобилях самым ненадежным элементом в системе охлаждения зарекомендовал себя как раз датчик температуры. Его контакты обгорают – и конец! И это, заметьте, при исправной работе разгрузочного реле.

Рис. 8. Схема включения электродвигателя вентилятора без разгрузочного реле на некоторых зарубежных автомобилях: 1 – датчик температуры; 2 – добавочный резистор; 3 – электродвигатель.

 

И чем больше потрудился датчик температуры, тем выше вероятность отказа из за противоиндукции: в момент разрыва контактов исчезающее электромагнитное поле не только создает высокое напряжение на вторичной обмотке катушки зажигания, необходимое для свечи, но и немалое, до 400 В, напряжение противоиндукции в первичной обмотке. Вот оно-то и «прожигает» контакты: каждое их размыкание не проходит бесследно – а за тысячу километров пути их накапливается около 4 миллионов. Результат – эрозия контактов. Система работает хуже и хуже. Задавая себе шекспировский вопрос «кипеть или не кипеть?», водителю надо чаще глядеть на указатель температуры и прислушиваться к шуму под капотом. Но еще вернее – вовремя заменить старенький датчик, дабы зря не рисковать. Однако есть и другие возможности.

 

Рис. 9. Доработанная схема включения электровентилятора: 1 – датчик температуры; 2 – реле; 3 – электродвигатель; 4 – диод

 

Первая: установить датчик включения вентилятора с тремя выходами – схема на рис. 8. Здесь уже нет разгрузочного реле. Электромотор включается постепенно – сначала через контакты 1 и 2 с добавочным резистором, а затем уже напрямую, через контакты 1 и 3. Результат – гораздо меньший эрозионный износ. Во многих случаях (при невысоких нагрузках на двигатель автомобиля) пара 1–3 почти не используется.

Второй вариант – на рис. 9: здесь сохраняется разгрузочное реле. Однако в цепи есть новый элемент – диод 4 (типа КД105 и близкие к нему). Зачастую диод впаивается непосредственно в реле (так удобней). В момент разрыва контактов датчика 1 тлетворное влияние на них ЭДС самоиндукции исключено – ток через диод уходит на «массу».

Подобное применение диодов очень характерно для зарубежных автогигантов «Мерседес», БМВ и т.д. В последнее время в продаже стали появляться готовые колодочки под такие реле – уже с впаянными туда диодом и проводками.

Завершая разговор о приводах вентиляторов, заметим: как ни совершенны многие из этих устройств, все же они не способны избавить двигатель внутреннего сгорания от одного из его серьезных недостатков – до 30% энергии топлива, "уходящие" в систему охлаждения, теряются безвозвратно.

Термостат 5 (см. рис. 1) автоматически поддерживает устойчивый тепловой режим двига­теля. Как правило, термостат устанавливают на вы­ходе охлаждающей жидкости из рубашек охлаж­дения головок цилиндров или впускного трубопро­вода двигателя.

Термостаты могут быть жидкостные и с твер­дым наполнителем.

В жидкостном термостате (рис. 10, б) имеется гофрированный баллон 7, заполненный легко испа­ряющейся жидкостью. Нижний конец баллона за­креплен в корпусе б термостата, а к штоку 5 верх­него конца припаян клапан 4.При температуре охлаждающей жидкости ниже 351 К (78°С) клапан термостата закрыт (рис. 10, а) и вся жидкость через перепускной шланг 2 (байпас) направляется обратно в водя­ной насос, минуя радиатор. Вследствие этого, ускоряется прогрев двигателя и впускно­го трубопровода.

Когда температура превы­сит 351 К (78°С), давление в баллоне 7 увеличивается, он удлиняется и приподнимает клапан 4. Горячая жидкость через патрубок 3 и шланг направляется в верхний бачок радиатора. Клапан 4 полно­стью открывается при темпе­ратуре 364 К (9ГС) (ЗМЗ-53).

Термостат с твердым наполнителем (ЗИЛ-130, «Моск­вич-2140», КамАЗ-740) име­ет баллон 7 (рис. 10, в), за­полненный церезином нефтя­ным воском) в и закрытый резиновой диафрагмой 9. При температуре 343 К (70°С) церезин плавится и, рас­ширяясь, перемещает вверх диафрагму 9, буфер 12 и шток 5. При этом открывается клапан 4 и охлаж­дающая жидкость начинает циркулировать через радиатор (рис. 10, г).         .

Рис. 10. Термостаты:

жидкостный: о—в закрытом положении, в —в открытом положении; с твердым наполнителем; я —в за­крытом положении, г— в открытом положении; 1 —впускной трубопро­вод, 2 —перепускной шланг, 3 — патрубок, 4 —клапан термостата, 5 —шток, б —корпус термостата, 7— баллон, 8— церезин, 9— диаф­рагма, 10 - направляющая втулка, 11—возвратная пружина, 12— буфер

 

При снижении температуры церезин затверде­вает и уменьшается в объеме. Под действием воз­вратной пружины 11 клапан 4 закрывается, а диаф­рагма 9 опускается вниз (рис. 10, в),

В двигателях автомобилей ВАЗ термостат выпол­нен двухклапанным и устанавливается перед во­дяным насосом. При холодном двигателе большая часть охлаждающей жидкости будет циркулиро­вать по кругу: водяной насос — блок цилиндров — головка цилиндров — термостат — водяной насос. Параллельно жидкость циркулирует через рубаш­ку впускного трубопровода и смесительной камеры карбюратора, а при открытом кране отопителя пас­сажирского помещения — через его радиатор,

Когда температура жидкости ниже 363 К (90°С), оба клапана термостата частично открыты. Часть жидкости поступает к радиатору.

При полностью прогретом двигателе основной поток жидкости из головки цилиндров направля­ется в радиатор системы охлаждения.

На двигателях автомобилей «Москвич-2140», как и на автомобилях ВАЗ, термостат расположен в нижней части системы охлаждения между радиа­тором и водяным насосом. Клапан термостата в данном случае более герметичен, радиатор при прогреве полностью отключается, двигатель прог­ревается быстрее.

Для контроля за температурой ох­лаждающей жидкости служат сигнальные лампы и указатели на щитке приборов. Датчики контрольно-измерительных приборов размещаются в головках цилиндров, верхнем бачке радиатора и рубашке ох­лаждения впускного трубопровода.

 

Пусковой подогреватель

 

У автомобилей ГАЗ-53А и ГАЗ-66 пусковой по­догреватель (рис. 11.) имеет котел 9, включенный в систему охлаждения двигателя. В камеру сгорания котла топливо подается самотеком из бака 2. Пос­тупление топлива дозируется регулировочной иглой электромагнитного клапана 7. Воздух подается вен­тилятором 3. Смесь воспламеняется свечой в, В цепь свечи включено дополнительное сопротивление, установленное на пульте управления подогревате­лем. По накалу спирали сопротивления судят о ра­боте свечи. Когда в камере сгорания котла будет достигнуто устойчивое горение, свечу выключают, топливо будет воспламеняться от ранее зажженно­го пламени.

На автомобилях КамАЗ пусковой подогреватель используют при температуре ниже 248 К (—25°С). Для облегчения пуска холодного двигателя при температуре до 248 К (—25°С) предназначено пус­ковое устройство «Термостат». Подача топлива на раскаленные электрофакельные свечи обеспе­чивается при проворачивании коленчатого вала дви­гателя стартером. Образовавшийся во впускных трубопроводах факел подогревает воздух, посту­пающий в двигатель.

Автомобиль - техника теплолюбивая. Ночуя зимой на улице, он охотно впадает в спячку и добудиться его поутру удается не всем. Поэ­тому в мороз как никогда велик спрос на бук­сир и «прикуриватель». Это надругательство не проходит безнаказанно. Даже если не уда­лось запороть двигатель, жизнь ему укороти­ли точно. А ведь есть куда более цивилизован­ный метод. Перед пуском мотор надо лишь подогреть. Способов много, начиная от паяль­ной лампы и заканчивая отопителем, управля­емым с сотового телефона. Правда, в послед­нем случае котлу надо купить сим-карту, сде­лав его полноценным абонентом сети. Боль­шинство предпочитает золотую середину.

                 

Рис. 11. Пусковой подогреватель двигателя автомобиля ГАЗ-53А:

1 — заливная горловина, 2 — топливный бак, 3 — вентилятор, 4 — воздухоподводяший шланг, 5 — переключатель, в — пульт управления, 7 — электромагнитный клапан, в — свеча, 9 — ко­тел, 10 — направляющий кожух, 11 — сливной кран

Обычный автономный подогреватель ра­ботает независимо от других систем автомо­биля. За что и получил свое название. Состо­ит он из жарового котла, топливного и жид­костного насосов, средств коммуникации и системы управления. Дальше все просто. В котле горит топливо, нагревая жидкость в теплообменнике. Насос гоняет ее по систе­ме охлаждения. Двигатель прогревается до готовности к пуску. Выпускают подогревате­ли разной мощности. Остается лишь сесть в кабину и повернуть ключ.

Основной недостаток - потребность в электроэнергии. Единственный в этом случае поставщик - автомобильный аккумулятор -с дополнительной нагрузкой справляется, но «живет» в среднем на год меньше.

Предпусковой разогрев - не единственный способ облегчения пуска. Можно просто не дать двигателю замерзнуть. То есть перевес­ти котел в режим поддержания. Здесь он бу­дет включаться периодически, сохраняя тем­пературу охлаждающей жидкости в интервале 40-85°С.. Полезная опция даже для рабо­тающего дизеля. Ведь на холостых оборотах он не только не нагревается, но и норовит остыть!

Раз уж мы все равно греем двигатель, по­чему заодно не нагреть салон? Ведь его «печка» уже включена в общую систему. На­до только вовремя открыть кран и включить вентилятор. С этим управляется автоматика. Вместо крана используют дополнительный термостат. Только в большинстве подобных конструкций приоритет отдается кабине. То есть кипяток сразу поступает в салон и лишь потом через термостат в двигатель. Погоду делают с пульта управления. Он, обычно, универсальный и совмещает функции пус­ковой кнопки, таймера и климат-контроля. Задав нужный режим, про мороз за окном можно забыть. И попив кофейку, спокойно укладываться спать. Не зря эти отопители популярны у дальнобойщиков. Довольны и автотранспортные компании. Молотящий двигатель на стоянке сжигает за ночь около сорока литров солярки, а подогреватель -меньше шести. Про ресурс и говорить нече­го. Хорошо и для легковушек - садиться в предварительно нагретый салон и приятно, и для здоровья полезно.

Когда машина ночует в тепле, с пуском проблем нет. А вот в кабине тепла не хватает. Например, в автобусе с его вечно распахну­тыми дверями. Или в большинстве отечест­венных легковушек с их дырявыми заслон­ками и воздуховодами. Здесь вполне можно ограничиться «воздушником», то есть ото­пителем, греющим непосредственно воздух. Он работает тоже на жидком топливе и отли­чается от предыдущих конструкцией тепло­обменника. Его легче пристроить в автомо­биле, и благодаря меньшему числу комплек­тующих он заметно дешевле.

Способы установки подогревателей на ав­томобиль отражены в инструкции. Но все не так просто, как кажется на первый взгляд. Даже у опытного мастера процесс монтажа занимает до восьми часов. Это притом, что для него время - деньги! Неискушенный но­вичок может завязнуть на целую неделю. Да еще наломать дров, за что придется платить. Так, популярный «воздушник» «Эберспехер» состоит из двух половинок, которые при ус­тановке крепятся к полу. Если болты затяги­вать неравномерно, корпус деформируется, зажимая крыльчатку вентилятора. Замена сгоревшего двигателя после пробного пуска обходится в $200-300.

Нелегко разобраться в хитросплетении проводов. Ошибаясь при подключении, легко спалить штатный блок климат-контроля. К печальным последствиям порой приводит обесточивание автомобиля. Как-то водитель «Ауди-А6» по окончании монтажных работ не смог тронуться с места - в отсутствие пи­тания оказался заблокированным модуль уп­равления автоматической коробкой. Протир­ка фар и пинание колес не помогли - при­шлось прокатиться на эвакуаторе.

Куда пристроить подогреватель на автомо­биле - отдельная история. Как правило, под капотом слишком мало места. Приходится использовать пустоты в бампере, багажнике или под кузовом - хватило бы шлангов. К любой машине - свой творческий подход. Чтобы труды по установке не пропали да­ром и котел исправно «топил» двигатель и кабину много лет, в эксплуатации тоже на­до следовать некоторым правилам. Главное - не спешить. Запускается подогреватель не сразу - на розжиг уходит минуты полторы. Нетерпеливый пользователь ждать не жела­ет и, пытаясь ускорить процесс, постоянно теребит кнопку «пуск». Таймер «сходит с ума», оставляя штифт накала непрерывно под напряжением.

 Перегревшись, последний сгорает. Автоматика тут же отключает систе­му. Запчасти есть смысл искать только на фирменных станциях. В магазинах их не продают. У «воздушников» надо регулярно очищать от слежавшейся пыли сетку забора воздуха и наружную крыльчатку. При плохом обдуве агрегат может перегреться, а отдельные ком­поненты - даже расплавиться.

 «Водяные» чувствительны к качеству «Тосола». Вода с синькой, сдобренная мусором из системы охлаждения, выведет из строя что угодно.

В заключении темы предварительного подогрева автомобиля бы рассказать о системе предварительного подогрева, а точнее о новом клапане (Рис. 14) системы предварительного подогрева салона и двигателя фирмы «Эберспехер», схема которого пред ставлена на Рис.12.

Рис. 12. Расположение нового клапана фирмы «Эберспехер» в системе предпускового подогрева двигателя и салона

 

Рис. 13. Эффект налицо: вверху – результат работы отопителя с новым клапаном, внизу – без него.

Фирма «Эберспехер» известна своими автономными подогревателями, обеспечивающими прогрев салона и двигателя без пуска последнего. Союз «и», однако, уместно заменить на «или», если у автомобиля мотор солидного рабочего объема. Дело в том, что его массивный блок цилиндров «работает» как алюминиевый радиатор, расточая драгоценное тепло в окружающее пространство. Процесс затягивается – а водителю-то хочется, чтобы стекла скорее оттаяли, и можно было сразу снять верхнюю одежду. До сих пор противоречие решали с помощью специального клапана, позволявшего подогревателю гонять антифриз по малому кругу, не расходуя киловатты на прогрев мотора. Решение не самое оптимальное, поскольку, во-первых, холодный пуск приводит к повышенному выбросу вредных газов, а, во-вторых, сразу после пуска этот клапан автоматически подключал большой круг «тосолообращения», отчего из дефлекторов начинало веять холодом.

Новый клапан, подобно термостату, плавно и постепенно увеличивает поток жидкости через блок цилиндров. Перемещением запорного поршенька управляет «пружина» из никель-титанового сплава, обладающего «памятью» (Рис. 15). Этот термостат настроен таким образом, что большой круг начинает открываться для антифриза, как только его температура достигнет 67°С. С этого момента «пружина» как бы растягивается и отодвигает поршень клапана.

Сравнительные испытания в термокамере при –20°С показали: с новой системой температура жидкости в малом круге через 10 минут достигает 60°С, тогда как без клапана – лишь 29,3°С. Соответственно, из дефлекторов на стекла дует воздух с температурой 42°С, а не 10°С. Что касается двигателя, он уже через 30 минут нагревается до комнатных +20°С. Гораздо быстрее оттаивает ветровое стекло: спустя 20 минут после запуска отопителя ото льда освобождается 80% его поверхности, тогда как раньше за это время очищалось лишь 30%.



Дата: 2019-12-10, просмотров: 241.