Кафедра химической технологии
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГУ ВПО “ОМКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ”

Им. Ф. М. Достоевского

Кафедра химической технологии

 

 

Курсовой проект

По дисциплине «Процессы и аппараты химической технологии»

 

Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол

 

Выполнила

студентка группы ХТ-401

Сулейменова С.А.

 

Научный руководитель:

доцент кафедры

химической технологии

Полякова Т. Н.

К защите допущена:

Зав. кафедрой химической технологии

“____” ______________200 г.

 

 

Омск – 2008


Введение

1.Теоретические основы разрабатываемого процесса

1.1. Общие сведения о процессе ректификации

1.2. Основные технологические схемы для проведения разрабатываемого процесса

1.2.1. Периодическая ректификация

1.2.2. Непрерывная ректификация

1.2.3. Экстрактивная и азеотропная ректификация

1.3. Типовое оборудование для проектируемой установки

1.3.1. Барботажные колонны

1.3.2. Насадочные колонны

1.3.3. Пленочные аппараты

1.3.4. Центробежные ректификаторы

1.4. Тарельчатые колонны

1.4.1. Колпачковые колонны

1.4.2. Ситчатые колонны

2. Теоретические основы расчета тарельчатых ректификационных колонн

2.1 Материальный баланс ректификационной колонны

2.2. Расчет флегмового числ

2.3. Уравнения рабочих линий

2.4. Определение числа тарелок и высоты колонны

2.5. Определение средних массовых расходов пара и жидкости в верхней и нижней частях колонны

2.6. Определение скорости пара и диаметра колонны

2.7. Гидравлическое сопротивление тарельчатых колонн

2.8. Расчет числа действительных тарелок графоаналитическим методом (построением кинетических линий)

3. Расчетная часть

3.1. Материальный баланс колонны и рабочее флегмовое число

3.2. Число теоретических тарелок

3.3. Средние массовые расходы пара и жидкости в верхней и нижней частях колонны

3.4. Скорость пара и диаметр колонны

3.5. Высота колонны

3.6. Расчет гидравлического сопротивления тарелок колонны

3.7. Расчет числа действительных тарелок графоаналитическим методом (построение кинетических кривых)

4. Выбор конструкционного материала аппарата и опор

Заключение

Чертежи

Список литературы

Приложения




Введение

 

Ректификация известна с начала девятнадцатого века, как один из важнейших технологических процессов главным образом спиртовой и нефтяной промышленности. В настоящее время ректификацию всё шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение: при получении окиси этилена, акрилонитрила, капролактама. Также ректификация широко используется и в других отраслях народного хозяйства: цветной металлургии, коксохимической и лесохимической промышленностях.

Так, одним из способов получения бензола является ректификация. Бензол (C6H6) — ароматический углеводород – входит в состав бензина, широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. В физическом весе пластмасс около 30%, в каучуках и резинах – 66%, в синтетических волокнах – до 80% приходится на ароматические углеводороды, родоначальником которых является бензол. Бензол входит в состав сырой нефти, но в промышленных масштабах по большей части синтезируется из других её компонентов. Ректификационные колонны беспечивают получение бензола и толуола чистотой 99,9%, содержание толуола в смеси ксилолов не превышает 1,5%. Применяют при получение отдельных фракций и индивидуальных углеводородов из нефтяного сырья в нефтеперерабатывающей и нефтехимической, а также в химико - фармацевтической промышленностях.

Целью данной работы является определение основных характеристик процесса и размеров тарельчатой ректификационной колонны непрерывного действия для разделения бинарной смеси бензол-толуол.



Периодическая ректификация

Периодически действующие ректификационные установки применяют для разделения жидких смесей в тех случаях, когда использование непрерывнодействующих установок нецелесообразно.

 

Один из возможных вариантов установки показан на рис. 1.4.

 

Рис. 1.4. Схема установки для проведения периодической ректификации:

1 – куб; 2 – колонна; 3 – дефлегматор; 4 – делитель потоков; 5 – холодильник; 6 – сборники.

 

Исходную смесь периодически загружают в куб – кипятильник 1, где доводят до кипения. Образующиеся пары поднимаются по колонне 2, в которой происходит противоточное взаимодействие этих паров с жидкостью (флегмой), поступающей из дефлегматора 3. Часть конденсата после делителя потока возвращается в колонну в виде флегмы, другая часть – дистиллят Р – через холодильник 5 собирается в сборниках 6,7 в виде отдельных фракций. Процесс ректификации заканчивают обычно после того, как будет достигнут за данный средний состав дистиллята.


Непрерывная ректификация

Рассмотрим, как реализуются указанные выше условия в ректификационных колоннах непрерывного действия (см. рис. 1.5), которые наиболее широко применяются в промышленности.

Рис. 1.5. Схема непрерывно действующей ректификационной установки:

1 – ректификационная колонна (а – укрепляющая часть, б – исчерпывающая часть); 2 – кипятильник; 3 – дефлегматор; 4 – делитель флегмы; 5 – подогреватель исходной смеси; 6 – холодильник дистиллята (или холодильник–конденсатор); 7 – холодильник остатка (или нижнего продукта); 8,9 – сборники; 10 – насосы.

 

Ректификационная колонна 1 имеет цилиндрический корпус, внутри которого установлены контактные устройства в виде тарелок или насадки. Снизу вверх по колонне движутся пары, поступающие в нижнюю часть аппарата из кипятильника 2, который находится вне колонны, т.е. является выносным, либо размещается непосредственно под колонной. Следовательно, с помощью кипятильника создается восходящий поток пара. Пары проходят через слой жидкости на нижней тарелке, которую будем считать первой, ведя нумерацию тарелок условно снизу вверх.

Пусть концентрация жидкости на первой тарелке равна х1 (по низкокипящему компоненту), а ее температура t1. В результате взаимодействия между жидкостью и паром, имеющим более высокую температуру, жидкость частично испаряется, причем в пар переходит преимущественно низкокипящий компонент. Поэтому на следующую (вторую) тарелку поступает пар с содержанием низкокипящего компонента у11.

Испарение жидкости на тарелке происходит за счет тепла конденсации пара. Из пара конденсируется и переходит в жидкость преимущественно высококипящий компонент, содержание которого в поступающем на тарелку паре выше равновесного с составом жидкости на тарелке. При равенстве теплот испарения компонентов бинарной смеси для испарения 1 моль низкокипящего компонента необходимо сконденсировать 1 моль высококипящего компонента, т.е. фазы на тарелке обмениваются эквимолекулярными количествами компонентов.

На второй тарелке жидкость имеет состав x2, содержит больше низкокипящего компонента, чем на первой (х2>x1), и соответственно кипит при более низкой температуре (t2<t1). Соприкасаясь с ней, пар состава у1 частично конденсируется, обогащается низкокипящим компонентом и удаляется на вышерасположенную тарелку, имея состав y2>x2, и т. д.

Таким образом, пар, представляющий собой на выходе из кипятильника почти чистый высококипящий компонент, по мере движения вверх все более обогащается низкокипящим компонентом и покидает верхнюю тарелку колонны в виде почти чистого низкокипящего компонента, который практически полностью переходит в паровую фазу на пути пара от кипятильника до верха колонны.

Пары конденсируются в дефлегматоре 3, охлаждаемом водой, и получаемая жидкость разделяется в делителе 4 на дистиллят и флегму, которая направляется на верхнюю тарелку колонны. Следовательно, с помощью – дефлегматора в колонне создается нисходящий поток жидкости.

Жидкость, поступающая на орошение колонны (флегма), представляет собой почти чистый низкокипящий компонент. Однако, стекая по колонне и взаимодействуя с паром, жидкость все более обогащается высококипящим компонентом, конденсирующимся из пара. Когда жидкость достигает нижней тарелки, она становится практически чистым высококипящим компонентом и поступает в кипятильник, обогреваемый глухим паром, или другим теплоносителем.

На некотором расстоянии от верха колонны к жидкости из дефлегматора присоединяется исходная смесь, которая поступает на так называемую питающую тарелку колонны. Для того чтобы уменьшить тепловую нагрузку кипятильника, исходную смесь обычно предварительно нагревают в подогревателе 5 до температуры кипения жидкости на питающей тарелке. Питающая тарелка как бы делит колонну на две части, имеющие различное назначение. В верхней части 1а (от питающей до верхней тарелки) должно быть обеспечено, возможно, большее укрепление паров, т. е. обогащение их низкокипящим компонентом с тем, чтобы в дефлегматор направлялись пары, близкие по составу к чистому низкокипящему компоненту. Поэтому данная часть колонны называется укрепляющей. В нижней части 1б (от питающей до нижней тарелки) необходимо в максимальной степени удалить из жидкости низкокипящий компонент, т.е. исчерпать жидкость для того, чтобы в кипятильник стекала жидкость, близкая по составу к чистому высококипящему компоненту. Соответственно эта часть колонны называется исчерпывающей. В дефлегматоре 3 могут быть сконденсированы либо все пары, поступающие из колонны, либо только часть их соответствующая количеству возвращаемой в колонну флегмы. В первом случае часть конденсата, остающаяся после отделения флегмы, представляет собой дистиллят (ректификат), или верхний продукт, который после охлаждения в холодильнике 6 направляется в сборник дистиллята 9. Во втором случае несконденсированные в дефлегматоре пары одновременно конденсируются и охлаждаются в холодильнике 6, который при таком варианте работы служит конденсатором-холодильником дистиллята. Жидкость, выходящая из низа колонны также делится на две части. Одна часть направляется в кипятильник, а другая – остаток (нижний продукт) после охлаждения водой в холодильнике 7 направляется в сборник 8. Преимущества непрерывной ректификации по сравнению с периодической: условия работы установки не изменяются в ходе процесса, что позволяет установить точный режим, упрощает обслуживание и облегчает автоматизацию процесса; отсутствуют простои между операциями, что приводят к повышению производительности установки; расход тепла меньше, причем возможно использование тепла остатка на подогрев исходной смеси в теплообменнике.

Благодаря перечисленным преимуществам в производствах крупного масштаба применяют главным образом непрерывную ректификацию, периодические процессы ректификации находят применение лишь в небольших, неравномерно работающих производствах.

Барботажные колонны

Барботажные колонны применимы для больших производительностей, широкого диапазона изменений нагрузок по пару и жидкости и могут обеспечить весьма четкое разделение смесей. Недостаток барботажных аппаратов – относительно высокое гидравлическое сопротивление – в условиях ректификации не имеет такого существенного значения. При ректификации повышение гидравлического сопротивления приводит лишь к некоторому увеличению давления и соответственно к повышению температуры кипения жидкости в кипятильнике колонны. Однако тот же недостаток (значительное гидравлическое сопротивление) сохраняет свое значение для процессов ректификации под вакуумом.

Насадочные колонны

В этих колоннах (см. рис. 1.9) используются насадки различных типов, но в промышленности наиболее распространены колонны с насадкой из колец Рашига. Меньшее гидравлическое сопротивление насадочных колонн по сравнению с барботажными особенно важно при ректификации под вакуумом. Даже при значительном вакууме в верхней части колонны вследствие большого гидравлического сопротивления ее разрежение в кипятильнике может оказаться недостаточным для требуемого снижения температуры кипения исходной смеси.

Для уменьшения гидравлического сопротивления вакуумных колонн в них применяют насадки с возможно большим свободным объемом.

В самой ректификационной колонне не требуется отводить тепло, как в абсорберах. Поэтому трудность отвода тепла из насадочных колонн является скорее достоинством, чем недостатком насадочных колонн в условиях процесса ректификации.

Однако и при ректификации следует считаться с тем, что равномерное распределение жидкости по насадке в колоннах большого диаметра затруднено. В связи с этим диаметр промышленных насадочных ректификационных колонн обычно не превышает 0,8–1 м.

В насадочных колоннах поверхностью контакта фаз является смоченная поверхность насадки. Поэтому насадка должна иметь, возможно, большую поверхность в единице объема. Вместе с тем для того, чтобы насадка работала эффективно, она должна удовлетворять следующим требованиям:

1)хорошо смачиваться орошающей жидкостью, т.е. материал насадки по отношению к орошающей жидкости должен быть лиофильным;

2)оказывать малое гидравлическое сопротивление газовому потоку, т.е. иметь, возможно, большее значение свободного объема или сечения насадки;

3)создавать возможность для высоких нагрузок аппарата по жидкости и газу;

4)иметь малую плотность;

5)равномерно распределять орошающую жидкость;

6)быть стойкой к агрессивным средам;

7)обладать высокой механической прочностью;

8)иметь невысокую стоимость.

 

Рис. 1.9. Насадочная ректификационная колонна с кипятильником: 1 – корпус; 2 – насадка; 3 – опорная решетка; 4 – перераспределитель флегмы; 5 – патрубок для слива кубового остатка; 6 – кипятильник; 7 – ороситель.

 

Очевидно, что насадок, которые бы полностью удовлетворяли всем указанным требованиям, не существует, так как соответствие одним требованиям нарушает соответствие другим (например, увеличение удельной поверхности а насадки влечет за собой повышение гидравлического сопротивления, а также снижение предельно допустимых скоростей газа и т.д.).

Поэтому в промышленности используют большое число разнообразных по форме и размерам насадок, изготовленных из различных материалов (металла, керамики, пластических масс и др.), которые удовлетворяют основным требованиям при проведении того или иного процесса ректификации.

Пленочные аппараты

Эти аппараты применяются для ректификации под вакуумом смесей, обладающих малой термической стойкостью при нагревании (например, различные мономеры и полимеры, а также другие продукты органического синтеза).

В ректификационных аппаратах пленочного типа достигается низкое гидравлическое сопротивление. Кроме того, задержка жидкости в единице объема работающего аппарата мала.

К числу пленочных ректификационных аппаратов относятся колонны с регулярной насадкой в виде пакетов вертикальных трубок диаметром 6–20 мм (многотрубчатые колонны), а также пакетов плоскопараллельной или сотовой насадки с каналами различной формы, изготовленной из перфорированных металлических листов или металлической сетки. Одна из распространенных конструкций роторно–пленочных колонн показана на рис. 1.10.

Рис.1.10. Схема роторно–пленочной ректификационной колонны:

1 – колонна; 2 – рубашка для обогрева; 3 – ротор; 4 – роторный испаритель; 5 – конденсатор–дефлегматор; 6 – штуцер для ввода исходной смеси; 7 – штуцер для ввода флегмы; 8 – штуцер для ввода пара; 9 – штуцер для вывода остатка.

Недостатки роторных колонн: ограниченность их высоты и диаметра (из–за сложности изготовления и требований, предъявляемых к прочности и жесткости ротора), а также высокие эксплуатационные расходы.

В случае загрязненных сред целесообразно применять регулярные насадки, в том числе при работе под повышенным давлением. Для этих сред можно использовать также так называемые колонны с плавающей насадкой. В качестве насадки в таких колоннах обычно применяют легкие полые шары из пластмассы, которые при достаточно высоких скоростях газа переходят во взвешенное состояние. Вследствие их интенсивного взаимодействия такая насадка практически не загрязняется.

В колоннах с плавающей насадкой возможно создание более высоких скоростей, чем в колоннах с неподвижной насадкой. При этом увеличение скорости газа приводит к расширению слоя шаров, что способствует снижению скорости газа в слое насадки. Поэтому существенное увеличение скорости газового потока в таких аппаратах (до 3–5 м/с) не приводит к значительному возрастанию их гидравлического сопротивления.

Центробежные ректификаторы

Для интенсификации массообмена и повышения эффективности разделения были предложены аппараты, работающие на принципе использования центробежной силы (колонны с вращающейся трубой, горизонтальные аппараты с вращающимся спиралевидным ротором).

Центробежный пленочный ректификационный аппарат состоит из неподвижного кожуха, в котором вращается с большой скоростью ротор, состоящий из спиральной металлической ленты, ограниченной изнутри и снаружи сетчатыми цилиндрами. Начальная смесь движется по стенкам спирали в виде тонкой пленки от центра к периферии. Пар движется с большой скоростью противотоком к жидкости, и взаимодействие фаз происходит на поверхности плёнки. Интенсивность массообмена определяется сопротивление жидкой и паровой пленок. Поэтому эффективность пленочной ректификации возрастает и турбулизацией потоков пара и жидкости.

Несмотря на сложность устройства, центробежные ректификационные аппараты могут быть успешно применены при разделении смесей, требующем очень большого числа тарелок.

Тарельчатые колонны

 

Наиболее распространенными абсорбционными аппаратами являются тарельчатые колонны. По своему устройству они делятся на колонны с колпачковыми тарелками и колонны с ситчатыми тарелками.

Колпачковые колонны

Эти колонны наиболее распространены в ректификационных установках. На рис.1.11. схематически изображена колонна небольшого диаметра, состоящая из тарелок 1, на каждой из которых имеется один колпачок 2 круглого сечения и патрубок 3 для прохода пара. Края колпачка погружены в жидкость. Благодаря этому на тарелке создается гидравлический затвор, и пар, выходящий из колпачка, должен проходить через слой жидкости, находящийся на тарелке. Колпачки имеют отверстия или зубчатые прорези для раздробления пара на мелкие пузырьки, т.е. для увеличения поверхности его соприкосновения с жидкостью.

Приток и отвод жидкости, а также высоту жидкости на тарелке регулируют при помощи переливных трубок 4, которые расположены на диаметрально противоположных концах тарелки; поэтому жидкость течет на соседних тарелках во взаимно противоположных направлениях.

Схема работы колпачковой тарелки изображена на рис. 1.12. Выходящие через прорези колпачки пузырьки пара сливаются в струйки, которые проходят через слой жидкости, находящейся на тарелке, и над жидкостью образуется слой пены и брызг, – основная область массообмена и теплообмена между паром и жидкостью на тарелке.

При движении струйки пара обычно сливаются друг с другом; при этом некоторая часть сечения прорезей обнажается, и образуются каналы, по которым газ проходит из-под колпачка сквозь жидкость. Поэтому поверхность взаимодействия газа с жидкостью непосредственно в зоне барботажа невелика. Основная зона фазового контакта находится в области пены и брызг над жидкостью, которые образуются вследствие распыления пара в жидкости и уноса брызг при трении пара о жидкость.

 

Рис. 1.11. Схема устройства тарельчатой (колпачковой) колонны: 1 – тарелка; 2 – колпачок; 3 – паровой патрубок; 4 – переливная трубка.

 

Рис.1.12. Схема работы колпачковой тарелки.

Ситчатые колонны

Колонны этого типа (см. рис. 1.13) состоят из вертикального цилиндрического корпуса 1 с горизонтальными тарелками 2, в которых просверливается значительное число мелких отверстий, равномерно распределенных по всей поверхности тарелки. Для слива жидкости и регулирования ее уровня на тарелке служат переливные трубки 3. Нижние концы трубок 3 погружены в стаканы 4 на лежащих ниже тарелках и образуют гидравлические затворы.

 

Рис. 1.13. Схема устройства ситчатой колонны: 1 – корпус; 2 – ситчатая тарелка; 3 – переливная трубка; 4 – стакан.

 

Пар проходит через отверстия тарелки (см. рис. 1.14) и распределяется в жидкости в виде мелких струек; лишь на некотором расстоянии от дна тарелки образуется слой пены и брызг – основная область массообмена и теплообмена на тарелке.

 

 

Рис. 1.14. Схема работы ситчатой тарелки.

В определенном диапазоне нагрузок ситчатые тарелки обладают большим к.п.д., чем колпачковые. Однако допустимые нагрузки по жидкости и пару для ситчатых колонн относительно невелики. При слишком малой скорости пара (около 0,1 м/сек) происходит просачивание жидкости через отверстия тарелки и в связи с этим резкое падение к.п.д. тарелки.

Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточными для преодоления давления слоя жидкости на тарелке и должны препятствовать ее стекания через отверстия.

Проскок жидкости у ситчатых тарелок возрастает с увеличением диаметра тарелки и отклонением ее от строго горизонтального положения. Поэтому диаметр и число отверстий следует подбирать так, чтобы жидкость удерживалась на тарелках и не увлекалась механически паром. Обычно диаметр отверстий ситчатых тарелок принимают равным 0,8 – 3 мм.

Ситчатые колонны эффективно работают только при определенных скоростях ректификации, и регулирование режима их работы затруднительно. Кроме того, ситчатые тарелки требуют весьма тщательной горизонтальной установки, так как иначе пары будут проходить через часть поверхности сетки, не соприкасаясь с жидкостью.

Ситчатые тарелки уступают колпачковым по допустимому верхнему пределу нагрузки; при значительных нагрузках потеря напора в них больше, чем у колпачковых.

При внезапном прекращении подвода пара или значительном снижении его давления тарелки ситчатой колонны полностью опоражниваются от жидкости, и требуется заново запускать колонну для достижения заданного режима ректификации.

Очистка, промывка и ремонт ситчатых тарелок производятся относительно удобно и легко.

Чувствительность к колебаниям нагрузки, а также загрязнениям и осадкам, которые образуются при перегонке кристаллизующихся веществ и быстро забивают отверстия тарелки, ограничивают область использования ситчатых колонн; их применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки).

Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром.

 

Расчет флегмового числа

 

Нагрузки ректификационной колонны по пару и жидкости определяются рабочим флегмовым числом R (R=Ф/D).

Используют приближенные вычисления, основанные на определении коэффициента избытка флегмы (орошения) Z=R/Rmin. Здесь Rmin – минимальное флегмовое число:

 

 

, где                                                           (2.20)

 

хF и хD – мольные доли легколетучего компонента соответственно в исходной смеси и дистилляте, кмоль/кмоль смеси; y*F – концентрация легколетучего компонента в паре, находящемся в равновесии с исходной смесью, кмоль/кмоль смеси.

Один из возможных приближенных методов расчета R заключается в нахождении такого флегмового числа, которому соответствует минимальное произведение N´(R+1), пропорциональное объему ректификационной колонны ( N – число ступеней изменения концентраций или теоретических тарелок, определяющее высоту колонны, а (R+1) – расход паров и, следовательно, сечение колонны).

При отсутствии данных о коэффициенте избытка флегмы для разделяемых смесей можно применять эмпирическую зависимость:

 

R=1,3·Rмин+0,3                                             (2.21)

 

Более точный метод расчета Rопт предполагает знание приведенных затрат и учет расходов, связанных с подачей сырья и подводом теплоты в колонну и организацией ее орошения, а также стоимость колонны и вспомогательного оборудования.

 

 

Рис. 2.16. К определению оптимального флегмового числа: 1 – эксплуатац. расходы; 2 – капитальные затраты; 3 – общие затраты на ректификацию.

 

Уравнения рабочих линий

 

y=                                           (2.22)

 

Зависимость (2.22) является уравнением рабочей линии укрепляющей части колонны. В этом уравнении  – тангенс угла наклона рабочей линии к оси абсцисс, а – отрезок, отсекаемый верхней рабочей линией на оси ординат.

 

, где f=F/D                                         (2.23)

 

Зависимость (2.22) представляет собой уравнение рабочей линии исчерпывающей части колонны. В этом уравнении – тангенс угла наклона рабочей линии к оси ординат, а  – отрезок, отсекаемый нижней рабочей линией на оси абсцисс. Умножив числитель и знаменатель выражений для А' и А на количество дистиллята D, можно заметить, что они представляют собой отношения количеств жидкой и паровой фаз, или удельный расход жидкости, орошающей данную часть колонны.

Расчетная часть

 

Разделяемая смесь: бензол–толуол (ХF=0.40). Нагрузка колонны по сырью – 10 т/час. Содержание низкокипящего компонента в дистилляте (ХD=0.97), в кубовом остатке (ХW=0.029). Контактный элемент – тарелка.

Число теоретических тарелок

 

Рассчитаем уравнение рабочей линии верхней части колонны по формуле (2.22) при XD=0.97; R=2.12:

 

y=

 

Интерполяцией определим составы жидкости и пара, покидающих тарелки верхней (укрепляющей) части колонны. Для расчета используем данные табл. 3.1.


x0=y1=XD=0.970

1) y2=0.947

2) y3=0.913

3) y4=0.863

4) y5=0.797

5) y6=0.729

6) y7=0.667

 

С 7-ой ступени стекает жидкость, близкая по составу к исходной смеси (ХF=0.44). Примем 7-ую ступень за ступень питания.

Далее для определения составов жидкости и пара будем пользоваться уравнением рабочей линии для нижней (исчерпывающей) части колонны.

Уравнение рабочей линии нижней части колонны определим по формуле (2.23) при ХW=0.03; R=2.12; F=10 т/час; D=3.94 т/час:

 

y=

1) y8=0.618

2) y9=0.585

3) y10=0.538

4) y11=0.475

5) y12=0.392

6) y13=0.305

7) y14=0.214

8) y15=0.137

9) y16=0.079

 

Итак, с 16-ой ступени стекает жидкость, содержание бензола в которой близко к содержанию его в кубовом остатке (ХW=0.03). Следовательно, при подаче исходной смеси на 7-ую ступень для осуществления процесса необходим аппарат, эквивалентный 16 теоретическим ступеням.

На практике данный алгоритм часто выполняют графически, строя ступенчатую линию между кривой равновесия и рабочей линией (см. приложение 1).


Высота колонны

 

По диаграмме t–x,y (см. рис. 3.20) определим составы фаз при средних температурах верхней и нижней частей колонны:

 

при tср.В.=890С→xВ=0.480; yВ=0.790

при tср.Н.=1030С→xН=0.140; yН=0.336

 

Определим вязкости бензола и толуола при средних температурах верхней и нижней частей колонны интерполяцией с использованием справочной информации по вязкости веществ [8]:

· Вязкость бензола при tср.В.=890С:

µ80Б=0.316 мПа·с; µ100Б=0.261 мПа·с

 

· Вязкость бензола при tср.Н.=1030С:

 

µ100Б=0.261 мПа·с; µ120Б=0.219 мПа·с

 

· Вязкость толуола при tср.В.=890С:

 

µ80Т=0.319 мПа·с; µ100Т=0.271 мПа·с

 

· Вязкость толуола при tср.Н.=1030С:

 

µ100Т=0.271 мПа·с; µ120Т=0.231 мПа·с

 

Рассчитаем среднемолярные вязкости жидкости (смеси) в колонне по формулам (2.27, 2.28):

а) в верхней части колонны при tср.В.=890С:

 

 

б) в нижней части колонны при tср.Н.=1030С:


 

Рассчитаем вязкости пара в колонне по формулам (2.29, 2.30):

а) в верхней части колонны при tср.В.=890С:

 

 

а) в нижней части колонны при tср.Н.=1030С:

 

 

Находим коэффициент относительной летучести по составам фаз при средних температурах для верхней и нижней частей колонны по формулам (2.25, 2.26):

а) для верхней части:

 

 

 

б) для нижней части:

 

 

Определим:

 

 

Далее по графику  (см. рис. 2.18) определим значения средней эффективности тарелок:

 

 

Рассчитаем число действительных тарелок для верхней и нижней частей колонны:

а) для верхней части (2.31):

 

 

б) для нижней части (2.32):

 

 

Тогда общее число действительных тарелок:

 

 

Далее значения ZВ и ZН выбираем в соответствии с рекомендациями:

Диаметр колонны, мм

ZВ, мм

ZН, мм

400–1000

600

1500

1200–2200

1000

2000

2400 и более

1400

2500

 

Рассчитаем высоту колонны по формуле (2.33):

 


Таблица 3.4 Данные для построения кинетической линии

параметр

Нижняя часть

Верхняя часть

x

0.05

0.15

0.30

0.60

0.75

0.90

m

2.60

1.87

1.34

0.82

0.65

0.51

Kyf

0.09

0.10

0.11

0.10

0.10

0.11

noy

4.79

5.32

5.85

5.11

5.11

5.62

Ey

0.99

0.99

0.99

0.99

0.99

0.99

λ

1.83

1.31

0.94

1.21

0.96

0.75

В

2.01

1.44

1.03

1.32

1.06

0.83

E''my

2.17

1.75

1.49

1.67

1.51

1.38

E'my

1.51

1.40

1.28

1.37

1.30

1.23

Emy

0.69

0.67

0.64

0.42

0.42

0.41

Y*

0.11

0.29

0.51

0.79

0.88

0.96

Yвх

0.06

0.21

0.43

0.72

0.82

0.92

Yвых

0.09

0.26

0.48

0.75

0.85

0.94

Используя данные табл. 3.4, наносим на диаграмму равновесия между паром и жидкостью в системе бензол–толуол при флегмовом числе R=2.12 точки, по которым проводим кинетическую линию (см. рис. 3.23).

 

Рис. 3.23. Определение числа действительных тарелок бензольно-толуольной смеси при флегмовом числе R=2.12

 

Построением ступеней между рабочей и кинетической линиями определим число действительных тарелок для верхней (укрепляющей) и нижней (исчерпывающей) частей колонны.

Общее число действительных тарелок:

 



Заключение

В процессе проделанной работы была рассчитана ректификационная колонна для разделения смеси бензол–толуол.

В результате расчета получены данные:

1) Расход дистиллята – 3.94 т/час;

2) Расход кубового остатка – 6.06 т/час;

3) Рабочее флегмовое число – 2.12;

4) Число теоретических тарелок:

Всего – 23, из них верхних – 7, нижних – 16;

5) Диаметр колонны – 1,8 м;

6) Высота колонны – 14.1 м;

7) Средняя эффективность тарелки:

В верхней части колонны – 0.45,

В нижней части колонны – 0.41;

8) Число действительных тарелок:

Всего – 38, из них верхних – 16, нижних – 22;

9) Гидравлическое сопротивление тарелок:

В верхней части колонны – 385.9 Па,

В нижней части колонны – 485.3 Па;



Список литературы

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГУ ВПО “ОМКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ”

Им. Ф. М. Достоевского

Кафедра химической технологии

 

 

Курсовой проект

По дисциплине «Процессы и аппараты химической технологии»

 

Дата: 2019-11-01, просмотров: 198.