Изучением солнечно-земных связей ученые занимаются давно. Они логически пришли к выводу, что недостаточно рассматривать Солнце только как источник лучистой энергии. Энергия Солнца - основной источник большинства физико-химических явлений в атмосфере, гидросфере и поверхностном слое литосферы. Естественно резкие колебания в количестве этой энергии влияют на указанные явления.
Систематизацией даннях о солнечной активности занимался цюрихский астроном Р. Вольф (R. Wolf, 1816-1893 г. г). Он определил, что, в среднем арифметическом, период максимального и минимального количества пятен - максимумы и минимумы солнцедеятельности равен одиннадцати годам [11].
Нарастание пятнообразовательного процесса от точки минимума до максимума происходит скачками с резкими подъемами и падениями, сдвигами и перебоями. Скачки постоянно растут и в момент максимума достигают своих наивысших значений. Эти скачки в появлении и исчезновении пятен, по-видимому, и являются виновниками многих эффектов, которые развиваются на Земле.
Наиболее показательной характеристикой интенсивности активности Солнца, предложенной Рудольфом Вольфом в 1849 году, являются числа Вольфа или, так называемые, цюрихские числа солнечных пятен.
Вычисляется по формуле
W=k* (f+10g),
где f - количество наблюдаемых на диске Солнца пятен,
g - количество образованных ими групп,
k - нормировочный коэффициент, выводимый для каждого наблюдателя и телескопа, чтобы иметь возможность совместно использовать найденные ими относительные числа Вольфа.
При подсчете f каждое ядро ("тень"), отделенное от соседнего ядра полутенью, а также каждая пора (маленькое пятно без полутени) считаются за пятна. При подсчете g отдельное пятно и даже отдельная пора считаются за группу.
Из этой формулы видно, что индекс Вольфа, есть суммарный индекс, дающий общую характеристику пятнообразовательной деятельности Солнца. Он непосредственно не учитывает качественную сторону солнечной активности, т.е. мощность пятен и их устойчивость во времени.
Абсолютное число Вольфа, т.е. подсчитанное конкретным наблюдателем, определяется суммой произведения числа десять на общее число групп солнечных пятен, при этом каждое отдельное пятно считается за группу, и полного количества, как одиночных, так и входящих в группы пятен. Относительное число Вольфа определяется путем умножения абсолютного числа Вольфа на нормировочный коэффициент, который определяется для каждого наблюдателя и его телескопа.
Восстановленная по историческим источникам, начиная с середины XVI века, когда начались подсчеты количества солнечных пятен, информация позволила получить усредненные за каждый прошедший месяц числа Вольфа. Это дало возможность определить характеристики циклов солнечной активности начиная с того времени и вплоть до наших дней.
Периодическая деятельность Солнца оказывает весьма заметное влияние на число и, по-видимому, на интенсивность гроз. Последние представляют собою видимые электрические разряды в атмосфере, сопровождающиеся обычно громом. Молния соответствует искровому разряду электростатической машины. Образование грозы связано с конденсацией водяных. паров в атмосфере. Всплывающие вверх массы воздуха адиабатически охлаждаются, и это охлаждение происходит часто до температуры ниже точки насыщения. Поэтому конденсация паров может наступить внезапно, образуются капли, создавая облако. С другой стороны, для конденсации паров необходимо присутствие в атмосфере ядер или центров конденсации, которыми, прежде всего, могут служить частички пыли.
Мы видели выше, что количество пыли в верхних слоях воздуха отчасти может быть обусловлено степенью напряжения пятнообразовательного процесса на Солнце. Кроме того, в периоды прохождения пятен по диску Солнца количество ультрафиолетового излучения Солнца также возрастает. Это излучение ионизирует воздух, и ионы становятся также ядрами конденсации.
Затем следуют электрические процессы в водяных каплях, которые приобретают электрический заряд. Одною из причин, обусловливающих эти заряды, является адсорбция водяными каплями легких ионов воздуха. Однако значение этой адсорбции второстепенное и очень незначительное. Замечено также, что отдельные капли под влиянием сильного электрического поля сливаются в струю. Следовательно, колебания в напряженности поля и перемена его знака могут оказать на капли известное влияние. Вероятно, таким путем образуются сильно заряженные капли во время грозы. Сильное электрическое поле способствует каплям также заряжаться электричеством.
Вопрос о периодичности гроз был поднят в западной литературе еще в 80-х годах прошлого века. Многие исследователи посвятили свои труды выяснению этого вопроса, как например Зенгер (Zenger), Красснер (Krassner), Бецольд (Bezold), Риддер (Ridder) и др. Так, Бецольд указывал на 11-дневную периодичность гроз, а затем из обработки грозовых явлений для Южной Германии за 1800-1887 гг. получил период в 25,84 суток. В 1900г. Риддер нашел два периода для повторяемости гроз в Ледеберге за 1891-1894гг., а именно: в 27,5 и 33 суток. Первый из этих периодов близок к периоду обращения Солнца вокруг оси и почти совпадает с лунным тропическим периодом (27,3). В то же время были сделаны попытки сопоставить периодичность гроз с пятнообразовательным процессом. Одиннадцатилетний период в количестве гроз был обнаружен Гессом для Швейцарии.
В России Д.О. Святский получил на основании своих исследований периодичности гроз таблицы и графики, из которых хорошо видны как периоды повторяемости так называемых грозовых волн для обширной Европейской России, первый - в 24 - 26, второй - в 26 - 28 суток, так и связь грозовых явлений с солнечной пятнообразовательной деятельностью. Полученные периоды оказались настолько реальны, что явилась возможность намечать на несколько летних месяцев вперед даты прохождения таких "грозовых волн". Ошибка не достигает более чем 1 - 2 суток, в большинстве получается полное совпадение.
Обработка наблюдений грозовой деятельности, произведенная в последние годы Фаасом, показывает, что для всей территории европейской части СССР наиболее часто и ежегодно встречаются периоды в 26 и 13 (полупериод) суток. Первый представляет собою опять-таки значение, очень близкое к обращению Солнца вокруг оси. Исследования о зависимости грозовых явлений в Москве от солнцедеятельности производились за последние годы А.П. Моисеевым, который, тщательно наблюдая за пятнообразованием и грозами с 1915 по 1926 г., пришел к заключению, что число и интенсивность гроз в среднем стоит в прямом соответствии с площадью пятен, проходящих через центральный меридиан Солнца. Грозы учащались и усиливались при увеличении числа пятен на Солнце и наибольшего напряжения достигали после прохождения, крупных групп пятен через середину диска Солнца. Таким образом, многолетний ход кривой частоты гроз и ход кривой числа пятен совпадают достаточно хорошо. Затем Моисеев исследовал другой интересный факт, а именно суточное распределение гроз по часам. Первый суточный максимум наступает в 12 - 13 часов дня местного времени. Затем с 14 - 15 следует небольшое понижение, в 15-16 часов идет главный максимум, и далее кривая понижается. По всему вероятно, данные явления стоят в связи как с прямым излучением Солнца и ионизацией воздуха, так и с ходом температуры. Из исследования Моисеева видно, что в моменты максимума солнечной деятельности, а также около момента минимума грозовая деятельность наиболее интенсивна, причем в моменты максимума гораздо резче выражена. Это несколько противоречит положению, поддерживаемому Бецольдом и Гессом, что минимумы частоты гроз совпадают с максимумами солнечной деятельности, Фаас в своей обработке гроз за 1996 г. указывает, что им было обращено особое внимание на то, что не увеличивается ли грозовая деятельность при прохождении крупных пятен через центральный меридиан Солнца. Для 1926 г. никаких положительных результатов получено не было, однако в I923 г. наблюдалась очень тесная связь явлений. Это может быть объяснено тем, что в годы максимума солнечные пятна группируются ближе к экватору и проходят вблизи видимого центра солнечного диска. При таком положении их возмущающее влияние на Землю следует считать наибольшим. Многие исследователи старались найти другие периоды гроз, но колебания грозовой деятельности по имеющимся в нашем распоряжении материалам слишком еще труднообозримы и не дают возможности установить какие-либо общие закономерности. Во всяком случае вопрос этот с течением времени привлекает внимание все большего количества исследователей.
Число гроз и их интенсивность известным образом отражаются и на человеке и его имуществе. Так, из статистических данных, приводимых еще Будэном (Budin), видно, что максимумы смертных случаев от удара молнии падают на годы максимального напряжения в деятельности Солнца, а минимумы их - на годы минимума пятен. В то же время русский лесовод Тюрин отмечает, что, согласно его исследованиям, произведенным на массовом материале, пожары в брянском лесном массиве принимали стихийный характер в 1872, 1860, 1852, 183б, 1810, 1797, 1776 и 1753 гг. В северных лесах также может быть отмечена периодичность, равная в среднем 20 годам, причем даты лесных пожаров на севере во многих случаях совпадают с указанными датами, что показывает на влияние одной и той же причины - засушливые эпохи, некоторые из них падают на годы максимумов солнцедеятельности. Можно отметить, что в суточном ходе грозовой деятельности и в суточном ходе числа пожаров от молнии наблюдается также хорошая зависимость.
Шаровая молния
Шаровая молния представляет собой светящуюся сферу, которая возникает во время грозы. Чаще всего она красная, хотя нередко сообщалось о светящихся шарах других цветов, включая желтый, белый, голубой и зеленый. Размеры ее бывают самыми разными, однако наиболее обычен диаметр около 15 см. Шаровая молния представляет собой разительный контраст с обычной молнией, так как она часто движется горизонтально вблизи земли с небольшой скоростью. Она может на какое-то время застыть неподвижно или изменить направление своего движения. В отличие от мгновенной вспышки обычной молнии шаровая молния существует сравнительно долго - несколько секунд или даже минут. Перемещаясь, светящаяся сфера нередко оказывается внутри помещений и проходит иногда совсем близко от наблюдателя. Она проникает в помещение через окно или через печную трубу и может покинуть его через такое же отверстие. Профессор Борн (факультет молекулярной физики Сус-Секского университета) вспоминает, что в дни его детства окна их дома во время грозы всегда оставлялись открытыми, чтобы шаровая молния, если она вдруг появится, могла вылететь беспрепятственно. Зенкевич, наоборот, рассказывает, что в их доме окна во время грозы закрывались, чтобы сквозняки не втянули огненный шар в комнату. Во многих случаях люди, видевшие шаровую молнию, отмечали, что шар, хотя он и чрезвычайно ярок, не испускает тепла и исчезает бесшумно. В других случаях происходили сильные взрывы, разбрасывающие по сторонам и повреждавшие оказавшиеся поблизости предметы.
В этих общих описаниях замечается большое разнообразие. Светящаяся сфера редко представляет собой правильный шар. Часто это масса довольно неправильной формы, иногда с несколькими выступами. Шаровая молния может испускать искры. В одних случаях границы ее отчетливы, в других несколько размыты. Часто сообщается о шипении или потрескивании, словно при электрическом разряде, а иногда шар движется совершенно бесшумно. Он то падает из тучи прямо на землю, как тело с заметной массой, то парит над землей или даже отскакивает от нее, как бы обладая упругостью. В некоторых случаях шаровую молнию, по-видимому, несет ветер, в других она движется в направлении, прямо противоположном ветру.
Такое большое разнообразие сообщаемых свойств приводит к значительной путанице при попытках найти четкое объяснение явлению шаровой молнии. Теорий было, пожалуй, даже слишком много. В большинстве объяснений грозовому электричеству отводится роль возбуждающего фактора, вызывающего возникновение светящейся массы. Длительную же активность шара пытаются объяснить в первую очередь химическими реакциями или электрохимическими процессами. Химические теории, если рассматривать их в порядке возникновения, исходили из того, что шар состоит из веществ, возникающих при грозовых разрядах: йодистого азота, смеси водорода и кислорода или озона, - свойства которых определяют энергию, высвобождающуюся при последующем распаде шаровой молнии. Высказывалась идея, что при вспышке молнии образуется активный азот и что этот выделившийся азот "горит" затем в атмосфере, в результате чего возникают окислы азота. Чисто электрические теории рассматривают шаровую молнию как кистевой разряд. Выдвигалось предположение, что короткий участок канала молнии отделяется от нее в виде вихря. Шаровую молнию могло бы также создать испарение какого-нибудь металла - например, меди - при интенсивной вспышке обычной молнии. Обсуждалась также идея таких распределений электрически заряженных частиц пыли, дождевых капель или ионов атмосферных газов, в которых нейтрализация противоположных зарядов каким-то образом замедляется. Многие из совсем недавно предложенных моделей используют теорию плазмы - область физики, исследующую свойства материи при высоких температурах и быстро развивающуюся сейчас в связи с проблемой управляемых термоядерных реакций.
Дата: 2019-11-01, просмотров: 209.