Следующее поколение средств изображения последовательностей
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Индивидуальное секвенирование геномов стало возможным и положило начало геномному проекту 1,000.Эти данные дают беспрецедентную возможность для характеристики видов человеческих генотипов, а также дают новое поколение вычислительных методов с появлением результата вычисления.

В некоторых случаях визуальная инспекция может способствовать оценки и интерпретации считывания согласованных методов и генетической изменчивости обнаружения вывода данных.

Ассемблирование изображает средства обладающими необходимыми функциями, но построенными по данным Сэнгер и первоначально существенно лучше считывающим обьем технологий NGS. Некоторые из этих средств в настоящее время модернизированы, для решения более сложных наборов данных существует Consed и обновленная Gap5, также разработана новая волна инструментов с учетом целей.

Например, Eagle View, Map View, IGV (таблица 1). В отличие от программного обеспечения эти средства, в первую очередь данные программ просмотра не предоставляют функции редактирования. Из-за их акцента на просмотре многие программы обеспечивают более гибкие возможности, а масштабирование позволяет пользователю свободно уменьшать изображение. Имеющаяся в продаже КГО геномика Workbench является особенно удобной для пользователя и включает в себя собственно считывание согласованных программ, которые могут быть запущены через GUL.

В контексте рессеквенции одна из пар дает ценную информацию о структурных изменениях, таких как вставка, удаление и инверсии. Как уже говорилось, в предыдущем разделе одна из пар может, указывать на неправильную сборку и пользователи могут выполнять обнаружение изменений по проекту ассемблирования и осведомлять об этих проблемах.

LookSeq и Gap5 используют вертикальную ось вращения и указывают размер вставки. Это разделяет одну из пар несовместимости на отдельные участки и визуально отделяет большие размеры вставок, которые предполагают включение результатов. При анализе структурных изменений, важно рассматривать аннотацию генов, например, приводят ли изменения к синонимам или нонсенсам в аминокислотах.

По этой причине некоторые из визуализирующих средств и некоторые законченные программы обеспечения помогают пояснением процессов на дисплее.

Consed служит примером на дисплее согласованной трансляции аминокислот во всех шести считываниях фреймах и позволяет пользователю аннотировать генотипы, повторы и определять гены.

Проблемы NGS и большой объем данных, создают вычислительные и представительные проблемы. Новые форматы файлов на пример выравнивание последовательности (карты SAM) форматы, принятые в 1,000 Геномном проекте, а также компактные форматы выравнивания. CALF обеспечивает компактное хранение данных считывания выравниваний.

Предындексанция, например файлов ВАМ (спутник бинарное представление SAM) – все шире используется для достижения быстрого поиска, случайно согласованных данных и уменьшает требования к памяти интерактивных выравниваний. Например, большинство считываний выравнивания изображений представляет считывание всех доступных файлов с использованием сортировки или колоризации в качестве руководства пользователя.

Тем не менее, это представление разрушается, когда происходит сотни и тысячи считываний карт в одном месте.

Пользователи нуждаются в суммарных методах, которые считывают базы и особенность выравнивания, для того, чтобы получить общий обзор, а также интерактивный доступ к основным востребуемым данным.

Кроме того, современное собрание NGS программ на основе графиков де Брейна производит связывание наборов генов считывания информации, которое может стать комплексом. Ассемблирование графических изображений в том и числе интерактивных изображений появляется для тог, чтобы обеспечить более высокий уровень визуализации собранной структуры.

Часть возможностей ассемблирования обрабатывающих программ обеспечения позволяет мгновенную интеграцию и анализ операций с визуализацией поиска. Последовательность поиска в результате динамической визуализации выравнивания представляет единственный подобный пример. Кроме того, эффективность работы пользователя может быть значительно улучшена путем предоставления рекомендаций, где искать. Например, пользователь может перейти к следующей области «низкого качества согласованности», используя навигационное меню Consed вместо того, чтобы вручную определять расположение. Достижения такого рода интеграции между визуальным и компьютерным анализом будет иметь важное значение в растущей потребности анализа данных.

Просмотр генов

 

Конечным продуктом секвенирования генома, сборки и обработки циклов являются высокосмежные последовательности, в котором большинство наборов генов имеют длины, что на порядок больше, чем при считывании. Как может исследователь управлять этой последовательностью и обнаруживать интересующие в ней области.

Последовательность содержит справочную систему координат и природную платформу, на которой собираются научные аннотации и геном отображается набором данных из различных источников.

Геномы браузеров были изначально разработаны для отображения данных на ранних собраниях проектов, таких как Элеганс геном и позднее на других модельных организмах (например, в Университете Калифорнийском Санта Круз, UCSC геномный браузер, Ассамблеи геномного браузера и NCBI карт изображений). Эти браузеры имеют много функций и их основные различия были рассмотрены в другом месте. Сегодня браузеры стали стандартными инструментами для изучения геномов, облегчают анализ геномной информации и обеспечивают общую платформу для исследований, обеспечивают хранение и публикацию научных открытий (таблица 2).

Дата: 2019-07-30, просмотров: 177.