Визуализация секвенирования данных
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Интерпретация первичных данных из машинного секвенирования начинается с автоматизированной обработки данных. База вызова и качество расчетов следует в случае последовательной сборки геномов или считывания регулировки по ссылке в случае рессеквенирования. Последние инновации в технологии секвенирования сопровождались ростом новой сборки и согласованию программ, чтобы справится с более короткими длинами считывания и большим числом операций считывания (для обзоров см.раб.1,2), но стандартов не было достигнуто. Для некоторых задач анализ визуальной проверки ценен в толковании и проверке автоматизированных мероприятий, им можно управлять с помощью как биологического, так и алгоритмического пути.

Например, выявление автоматизированного однонуклеотидного полиморфизма на основе данных секвенирования остается незавершенным, и визуальный осмотр используется до сих пор для оценки отдельных случаев и для биологических результатов и технических наблюдений, которые могут быть использованы для улучшения прогнозирования алгоритма. В этом разделе говорится о сообщениях, которые освещают графические средства для анализа последовательности.



Визуализация выравнивания

Анализ узлов и считывания выравнивания часто предусматривает анализ последовательности собственно считывания, а все средства, перечисленные в таблице 1, обеспечивают осмотр унифицированных считываний основ. Считывание последовательности, как правило, предоставлено в виде строки, происходит горизонтально слева направо и укладывается вертикально. В случае ассемблирования, пользователь может сканировать считыванием из стека соответствующего столбца.

Основное свойство часто идентифицируется с градацией серого и основывается на противоречии с согласованием, придающим особое значение цветам. Некоторые инструменты минимизировали визуальные помехи, в стеке считывания выделяя только противоречия и скрывая все последовательные пары оснований (например, программа интегративной геномики, Национальный центр биотехнологической информации, просмотр программы архива ассамблеи, выравнивание текста в программе просмотра SAM tools). Большинство средств, построенных до появления следующего поколения последовательности, продолжают оказывать поддержку визуализации основных первичных данных для Сэнгер считывания отдельных следов просмотра. Например, в популярной программе Consed «след» окна может быть запущен из «соответствующего окна» и движение курсора синхронизируется. Этот режим позволяет пользователю проверять позиции конфликтующих баз и выявляет источник неопределенности в рамках первичных следов напрямую.

В значительной степени NGS данные изменились настолько, что пользователь сможет оценить неопределенность основных консенсусов. Например, Consed позволяет пользователю проверять недоработанную Рош 454 последовательности данных, а в случае Illumina и Applied Biosystems обеспечивает надежность информации, в случае если нет недоработанных следов считывания, а есть только данные в виде изображения (Подробная информация об этих технологиях секвенирования рассматривается в другом месте). Consed и аналогичные программы не отображают первичные изображения данных, в частности потому, что их большие размеры делают их слишком дорогими для того, чтобы хранить их в сети, а также медленно отображаются на экране

Однако высокая скорость считывания, граничащая с генерированием NGS часто, облегчает, возможность пристально изучать какое-либо считывание. Пользователь может обнаруживать или вычислять одно подозрительное основание на протяжении одного считывания , сравнивать с соответствующим основанием в других считываниях выравнивания размещенных в других местах.

Устройство вывода автоматического секвенирования собирает незавершенные программы и повторяет место считывания, считывая на расстоянии.

Следующий шаг «завершения» включает в себя исключение пробелов, исправление неправильно собранных и возможность исправления ошибок согласованных основных компонентов. Специализированная обработка программного обеспечения упрощает этот процесс за счет автоматизации и позволяет пользователю выполнять вышеперечисленные задачи. В некоторых случаях автоматической обработки достаточно, например, в исполнении Autofinish, так как эта программа, рассматривает выход собраний программ и предлагает введение лабораторных данных (например, специфических праймеров для ПЦР).

Тем не менее, в других ситуациях ручной проверки и редактирования необходимо к дополнению по автоматизации пробелов Consed и коммерчески доступных Sequencher (ген кодирующая корпорация) и Lasergene (DNASTAR) широко использовать обрабатывающие программы, которые предоставляют богатые функциональные возможности редактирования и отслеживания истории и позволяют пользователю отдельно, вручную присоединяться к соседнему, что отличает их от статистического выравнивания программ просмотра, которые нельзя редактировать (таблица 1).

В большинстве последовательностей протоколов диапазон размеров фрагментов генома неизвестно. Последовательность считывания, получена из разных концов одного и того же источника геномного фрагмента («математической пары»), поэтому предполагаем интервал («вставить размер») и полагаем ориентацию (1 верхняя нить считывания и одна нижняя нить считывания). Одна из пар, которая нарушают эти пространственные ограничения, может быть использована для выявления несобранных, а одна из последовательных пар может быть использована для их присоединения.

Consed собрание программ просмотра «изображает одну из пары как цветные линии, охватывающие соседние, изображая последние горизонтально ориентированными блоками. Этот дисплей визуально разделяет «последовательные» пары (те, которые предполагаемого размера и ориентации) путем построения их выше или ниже наборов генов считывания, которые связаны друг с другом перекрыванием их последовательностей, что позволяет выявить неправильную сборку (рисунок1а). Одно из преимуществ этого метода, является то, что он позволяет вести интерактивную фильтрацию отображаемых данных (наборов генов считывания, аналогичных последовательностей и т.д.). Несмотря на это у фильтрации есть одно ограничение, это то, что изображение может быстро портится, так как число пар увеличивается.

Например, в Consed иногда желательно отключать изображения всех согласованных пар внутреннего набора генов считывания, так как их количество перегружает изображение.

В дополнении к одной из пар последовательности сходство может быть использовано для выявления всевозможных генов считывания и для проверки выхода «окно сравнения наборов генов считывания». Аналогичные функции существуют и в других обрабатывающих программах обеспечения, например Gap4 присоединенный редактор наборов генов считывания. Эти предоставленные последовательности дополняющие обзор показывают, как Gap4 использует точечные графики, изображающие каждую из осей, которые указывают на позиции вдоль длины наборов генов считывания, и разделяет точки в местах совместимости выше границ подобной последовательности.

Пользователь может интерактивно исследовать последовательность взаимосвязи между различными наборами генов считывания и просматривать результаты поисковых операций, таких как «найти, повтор». Собрание изображений Consed может отображать выход утилита сравнения называемого «пара крестов», используя для этого связывание областей с подобной последовательностью между пользователем наборов генов считывания

Различные цвета означают такие функции как направление повторяющиеся из интернированных повторов. Одним из преимуществ просмотра сходства последовательностей в сборке изображения является возможность интегрирования считывания участков, которые могут выявлять неожиданно высокие регионы действия и часто указывают на аналогичные последовательности, которые были ошибочно разрушены и собраны в одну. Пользователь может выбрать для изучения последовательности сходства на основном уровне, и снова нажимая, изучает, то, что лежит в основе сообщения. Существуют также автономные инструменты функций, относящиеся например к Miropeats, широко используемые для ранних геномных проектов секвенирования.

UNIXC – оболочки, которые генерируют статистические картинки с использованием дуговых изображений для обозначения различных повторов.

Дата: 2019-07-30, просмотров: 170.