Диссертация на соискание ученой степени кандидата физико-математических наук по специальности 01.04.18 – физика и химия поверхности. – Институт химии поверхности им. А.А. Чуйко НАН Украины, Киев, 2008.
Диссертация посвящена теоретическому исследованию неустойчивостей Хопфа и Тюринга в неравновесных системах. В качестве модельных были выбраны система ФитцХью-Нагумо, которая является канонической реакционно-диффузионной системой типа активатор-ингибитор, и электрохимическая система, в которой проходит электрокаталитическая реакция на поверхности сферического микроэлектрода. Это так называемые N-системы. В первой N-подобную форму имеет нульклина динамической переменной активатора, что позволяет системе ФХН воспроизводить такие важные свойства неравновесных систем как возбудимость и бистабильность. Во второй N-подобную форму имеет вольтамперная кривая, что содержит область так называемого отрицательного дифференциального сопротивления, в которой обычно и возникают рассматриваемые неустойчивости. В этой системе потенциал играет роль активатора, а концентрация электроактивных частичек в приэлектродном слое - роль ингибитора. Для точечной системы ФХН как эмпирической модели возбудимых биологических мембран на основе бифуркационной теоремы Хопфа найдены условия существования устойчивых периодических колебаний при стимуляции системы постоянным внешним током. Найдена зависимость периода колебаний от этого контрольного параметра системы. С помощью численного моделирования проанализировано поведение точечной системы ФХН при различных условиях периодической стимуляции (форме и частоте периодических импульсов). Для редуцированной одномерной системы ФХН, в определенном диапазоне значений стимулирующей постоянной силы, найдено ее точное решение, которое представляет собой кинк (гиперболический тангенс), распространяющийся с определенной постоянной скоростью, которая кроме параметра постоянной внешней силы зависит от коэффициента диффузии активатора и уровня возбудимости системы. На основе модели ФХН исследован вопрос возникновения и развития одномерных и двумерных пространственно-временных структур, обусловленных потерей устойчивости однородного состояния через бифуркацию Хопфа и Тюринга. На основе метода импедансной спектроскопии установлены условия возникновения бифуркации Хопфа в модельной электрохимической системе с одним сортом электроактивных частиц, массоперенос которых рассматривался в рамках диффузионной модели Нернста, предполагающей, что толщина диффузионного слоя одинакова по всей поверхности сферического микроэлектрода. Показано, что в такой системе природу неустойчивости обуславливает отрицательный импеданс, который определяется взаимодействием процессов массопереноса и адсорбции-десорбции, зависящих от потенциала и предшествующих реакции переноса заряда. Показано, что при потенциостатическом режиме осцилляции возникают, если фарадеевский импеданс стремится к нулю с отрицательной стороны Re(Zf(w)), когда w®¥. Значение контрольного параметра w в точке бифуркации Хопфа зависит от радиуса электрода и толщины диффузионного слоя Нернста. Существуют две точки бифуркации Хопфа (две частоты), в которых мнимая и реальная части фарадеевского импеданса обращаются в нуль. Область потенциалов, в которой наблюдается неустойчивость Хопфа, уменьшается с уменьшением радиуса электрода. Последнее вызывает также смещение бифуркационной частоты в область более высоких частот. При увеличении толщины диффузионного слоя Нернста бифуркационная частота смещается в область более низких частот для сферического электрода одного и того же радиуса.
Ключевые слова: пространственно-временные структуры, реакционно-диффузионные системы, модель ФитцХью-Нагумо, электрокаталитические поверхностные реакции, неустойчивости Хопфа и Тюринга, фарадеевский импеданс, диффузионный слой Нернста, сферический микроэлектрод.
SUMMARY
Дата: 2019-07-30, просмотров: 327.